HER801 THRU HER808

GLASS PASSIVATED HIGH EFFICIENCY RECTIFIERS

Reverse Voltage – 50 to 1000 Volts
Forward Current – 8.0 Amperes

Features
- Plastic package has Underwriters Laboratory
 Flammability Classification 94V-0 utilizing
 Flame Retardant Epoxy Molding Compound
- Low power loss, high efficiency
- Low forward voltage, high current capability
- High surge capacity
- Ultra Fast recovery times, high voltage

Mechanical Data
- Case: Molded plastic TO-220A
- Mounting position: Any
- Terminals: Leads solderable per MIL-STD-202, method 208 guaranteed
- Polarity: as marked

Maximum Ratings and Electrical Characteristics
Ratings at 25°C ambient temperature unless otherwise specified. Single-phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>HER 801</th>
<th>HER 802</th>
<th>HER 803</th>
<th>HER 804</th>
<th>HER 805</th>
<th>HER 806</th>
<th>HER 807</th>
<th>HER 808</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>V_{RMS}</td>
<td>35</td>
<td>70</td>
<td>140</td>
<td>210</td>
<td>280</td>
<td>420</td>
<td>560</td>
<td>700</td>
<td>V</td>
</tr>
<tr>
<td>V_{DC}</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>I_{AV}</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>V_F</td>
<td>1.0</td>
<td>1.3</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_R</td>
<td>10</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>C_J</td>
<td>80</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>T_t</td>
<td>50</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>R_{jc}</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>T_J</td>
<td>-55 to +150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_S</td>
<td>-55 to +150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Note:
1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts D.C.
2. Reverse recovery test conditions: I_f = 0.5A, I_R = 1.0A, I_{RR} = 0.25A.
3. Thermal Resistance from junction to case mounted on heat sink.
RATINGS AND CHARACTERISTIC CURVES

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

NOTES:
1. Rise Time=7ns max. Input Impedance= 1 megohm 22 pf
2. Rise Time=10ns max. Source Impedance= 50 ohms

TYPICAL REVERSE CHARACTERISTICS

Fig. 4-TYPICAL FORWARD CHARACTERISTICS

Fig. 5-MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

Fig. 6-TYPICAL JUNCTION CAPACITANCE

CASE TEMPERATURE, °C

MAXIMUM FORWARD CURRENT DERATING CURVE

NUMBER OF CYCLES AT 60Hz

REVERSE VOLTAGE, (V)

FORWARD VOLTAGE, (V)

PEAK FORWARD SURGE CURRENT (A)

JUNCTION CAPACITANCE (pF)

NUMBER OF CYCLES AT 60Hz

REVERSE VOLTAGE, (V)