

Range:

This specification shall cover the characteristics of SAW filter with Strong's P/N: SX3033M

1. Package Dimension

(SIP5K)

Pin No. F	unctions

- 1. Input
- 2. Input
- 3. Ground
- 4. Output
- 5. Output

2. Marking

SX3033M	. Model No.
1	. PIN NO.1

STRONG

3. Performance

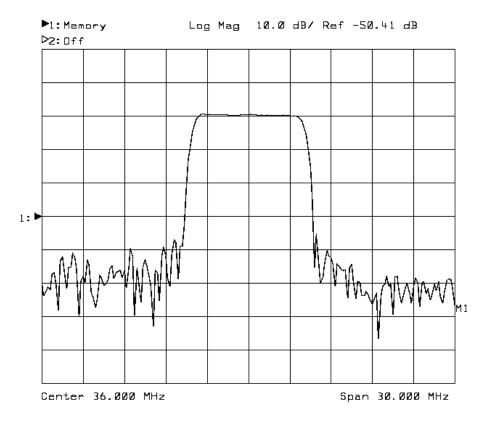
3.1 IF SAW Filter for Band Pass

3.3 MAXIMUMRATINGS

ITEM	TEST ENDS	MAX.	NOTE
DC Voltage	Input . Output	3V	
	Others	15V	
Instant DC Voltage	Every end	10V	
Alternating Voltage	Input . Output	10Vp-p	
Instant Pulsating Voltage	Input . Output	100V	
Input signal oscillation	Input	5Vp-p	
Operating Temperature Range		-20~70°C	
Storage Temperature Range		-40~85℃	

3.4 Electronic Characteristics(Ta=25°C)

3.4.1.Amplitude Characteristics


1dB Pass Bandwidth	7.3 MHz (typical value)
3dB Pass Bandwidth	7.8 MHz (typical value)
30dB Pass Bandwidth	9.3 MHz (typical value)
Attenuation (ref. : 36.125 MHz):	
FREQUENCY(MHz)	VALUE(dB)
31.25 MHz	-35.0 dB Max.
32.13 MHz	$-2.5 \pm 1.5 \text{ dB}$
32.32 MHz	$-0.7 \pm 1.5 \text{ dB}$
39.93 MHz	-2.5±1.5 dB
40.13 MHz	-5.0±1.5 dB
47.25 MHz	-42.0 dB Max.
25.00 to 31.25 MHz	-34.0 dB Max.
40.90 to 50.00 MHz `	-30.0 dB Max.

3.4.2.Other Characteristics

ITEM	VALUE	NOTE
Insertion loss(dB)(50 Ω) Ref: 36.125 MHz	STD±1.5dB STD: 28.5dB	Input SAWF on Fig2. output strength of f=ref is V1,output strength is V2,when stand (fig3)product instead SAWF f=ref. Insertion Loss=-20Log(V2/V1)dB
Input Impedance	2.3KΩ//14.7pF	*1 f=1.0MHz
Output Impedance	2.4KΩ//3.9pF	*1 f=1.0MHz
Temperature Coefficient(ppm/°C)	-72 max.	*2 Ta=-20~70°C

Strong Electronics&Technology Limited

3.5 Frequency Characteristics

4. Test Circuit

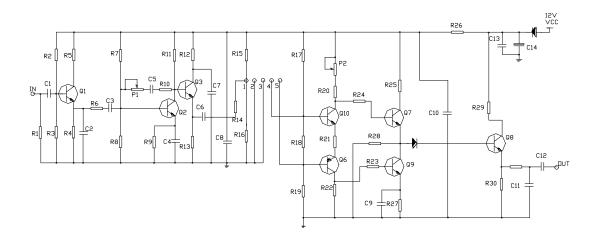


Fig.1 Test Circuit

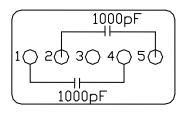


Fig.2 Standard Products(Insertion Loss)

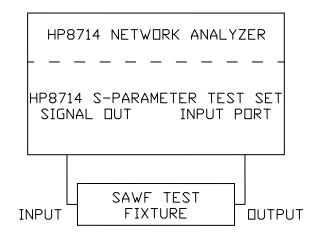


Fig.3 Test System

5 ENVIRONMENTAL CHARACTERISTICS

ITEM	REQUIREMENT	JUDGEMENT
	Т=Мах 85°С 500Н	
High Temperature	T=60°C,RH=90~95% 500H	
	Being placed in natural condition for 1 hour	Insertion Loss
Humidity	T=60°C, RH=90~95% 500H	should be
	Being placed in natural condition for 2 hours	within 1dB
Low Temperature	T=Min -40°C 500H	whether before
	Being placed in natural condition for 1 hour	testing or after testing
High Temperature Shock	T=80°C, DC3V, 500H	testing
Humidity Electrify	T=60°C,RH=90~95% DC3V 500H	
	Being placed in natural condition for 2 hours	
Salt Water Spaying	Density 5%, 24 hours	

5.1 Humidity, temperature Test

5.2 Temperature Cycle, Soldering heat Test

ITEM	REQUIREMENT	JUDGEMENT
Temperature Shock	It shall be placed at temperature of -40° C for 30 minutes, then replaced at temperature of $+85^{\circ}$ C for 30 minutes. It shall be placed in natural condition for 1 hour. +85C -40C 0.5H 0.5H	Same as judgement of 6.1
Soldering Heat	 Lead terminal are immersed up to 1mm from it's body in solder of 260±5°C for 10 seconds. And then it shall be measured after being placed in natural condition for 1 hour. Lead terminals are immersed in soldering bath of 350 ±10°C for 3 seconds. And then it shall be measured after being placed in natural condition for 1 hour. 	Same as judgement of 6.1
Soldering Ability	Lead terminals are immersed in soldering bath of 230 ± 5 °C for 5 seconds.	The solder shall coat at least 95% of the lead terminal
Repeatedly Heat	Repeated 3 times after being on circuit board under following condition: 260°C 200°C 160°C 140°C 90S10S	Same as judgement of 6.1

5.3 Mechanical Test

ITEM	REQUIREMENT	JUDGEMENT
Vibration It shall be measured after being applied vibration of amplitude of 1.5mm with 600 to 3300 rpm of vibration frequency to each of 3 perpendicular directions for 2 hours.		Same as judgement of 6.1
RandomIt shall be measured after 3 times random drop from the height of 0.75 m on maple floor.		
Terminal PullingForce 10 seconds of 1 kg applied to each terminal in axial direction.		No unusual
Terminal Bending	Lead terminals shall be folded up to 45° with 3 kg force, then folded back to their axial direction 2 times	

5.4 Other Test

ITEM	REQUIREMENT	JUDGEMENT
Amplitude Test	Link following circuit, use capacitance after being charged to discharge between terminals $DC = \underbrace{\Box }_{\text{L}} \underbrace{\Box }_{\text{L}$	Same as judgement of 6.1

© Copyright 2006 STRONG, All Rights Reserved