ST 9012

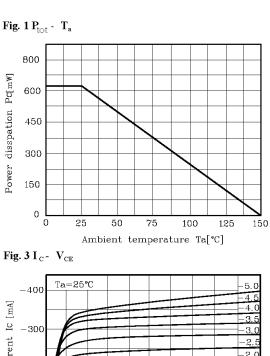
PNP Silicon Epitaxial Planar Transistor

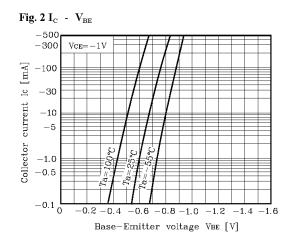
for switching and amplifier applications. Especially suitable for AF-driver stages and low power output stages.

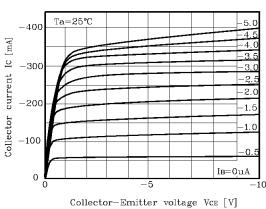
The transistor is subdivided into three groups, G, H and I, according to its DC current gain. As complementary type the NPN transistor 9013 is recommended.

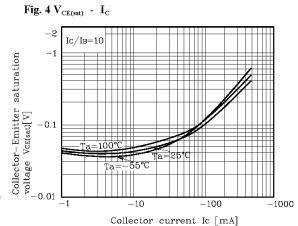
 Emitter 2. Base 3. Collector TO-92 Plastic Package

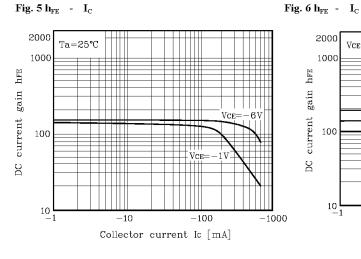
Absolute Maximum Ratings $(T_a = 25 \, ^{\circ}C)$

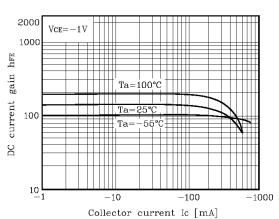

Absolute Maximum Natings (1 _a = 25° 0)					
Parameter	Symbol	Value	Unit		
Collector Base Voltage	-V _{CBO}	40	V		
Collector Emitter Voltage	-V _{CEO}	30	V		
Emitter Base Voltage	-V _{EBO}	5	V		
Collector Current	-I _C	500	mA		
Power Dissipation	P _{tot}	625	mW		
Junction Temperature	T _j	150	°C		
Storage Temperature Range	T _{stg}	- 55 to + 150	°C		


Characteristics at T_a = 25 °C


Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at $-V_{CE}$ = 1 V, $-I_{C}$ = 50 mA Current Gain Group G H I at $-V_{CE}$ = 1 V, $-I_{C}$ = 500 mA	h _{FE} h _{FE} h _{FE}	110 177 250 40	183 250 380	- - - -
Collector Base Cutoff Current at -V _{CB} = 35 V	-I _{CBO}	-	100	nA
Emitter Base Cutoff Current at -V _{EB} = 5 V	-I _{EBO}	-	100	nA
Collector Base Breakdown Voltage at $-I_C = 100 \mu A$	-V _{(BR)CBO}	40	-	V
Collector Emitter Breakdown Voltage at -I _C = 1 mA	-V _{(BR)CEO}	30	-	V
Emitter Base Breakdown Voltage at -I _E = 100 µA	-V _{(BR)EBO}	5	-	V
Collector Emitter Saturation Voltage at $-I_C = 500 \text{ mA}$, $-I_B = 50 \text{ mA}$	-V _{CE(sat)}	-	0.6	V
Base Emitter Saturation Voltage at $-I_C = 500 \text{ mA}$, $-I_B = 50 \text{ mA}$	-V _{BE(sat)}	-	1.2	V
Base Emitter Voltage at $-V_{CE} = 1 \text{ V}$, $-I_C = 100 \text{ mA}$	-V _{BE}	-	1	V
Gain Bandwidth Product at $-V_{CE} = 6 \text{ V}$, $-I_{C} = 20 \text{ mA}$	f⊤	100	-	MHz




Dated: 19/03/2009



Dated: 19/03/2009