

CA-IS305x 3.75kV_{RMS}/5kV_{RMS}/7.5kV_{RMS} Isolated CAN Transceivers

1 Features

- Meets the ISO 11898-2 physical layer standards
- Integrated protection increases robustness
 - 3.75kV_{RMS}, 5kV_{RMS} and 7.5kV_{RMS} withstand isolation voltage for 60s (galvanic isolation)
 - ±150kV/μs typical CMTI
 - ±58V fault-tolerant CANH and CANL
 - ±30V extended common-mode input range (CMR)
 - Driver dominant timeout prevents lockup, data rates down to 5.5kbps
 - Thermal shutdown protection
- Date rate is up to 1Mbps
- Low loop delay: 150ns (typical), 210ns (maximum)
- 2.5V to 5.5V I/O voltage range, supports 2.7V, 3V,
 3.3V and 5V CAN controller interface
- Ideal passive behavior when unpowered
- Wide operating temperature range: -40°C to 125°C
- Multiple package options: SOIC8-WB (G), SOIC16-WB (W), DUB8 (U) and SOIC8-WWB (WG)
- Safety Regulatory Approvals
 - VDE certification according to DIN EN IEC60747-17(VDE 0884-17):2021-10
 - UL certification according to UL 1577
 - CQC certification according to GB4943.1-2022
 - TUV certification according to EN61010-1:2010+A1

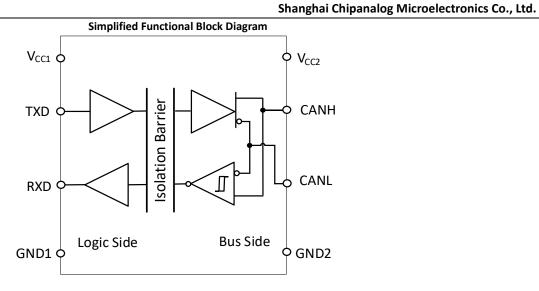
2 Applications

- Industrial Controls
- Building Automation
- Security and Protection System
- Transportation
- Medical
- Telecom
- HVAC

3 General Description

The CA-IS305x family of devices is galvanically-isolated controller area network (CAN) transceiver that has superior

isolation and CAN performance to meet the needs of the industrial applications. All devices of this family have the logic input and output buffers separated by a silicon oxide (SiO₂) insulation barrier that provides galvanic isolation. Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports. Both the CA-IS3050 and the CA-IS3052 are available in wide-body SOIC8 and SOIC16 packages, but offer different pinout; also, the CA-IS3050 is available in DUB8 and super wide-body SOIC8 packages. The SOIC16-WB (W) is the industry standard isolated CAN package while the SOIC8-WB (G) and DUB8 (U) are much smaller packages that further reduce the board space in addition to reduced components due to integration of isolation and CAN with protection features. The CA-IS3050U provides up to 3.75V_{RMS} (60s) of galvanic isolation; The CA-IS305xG/W provide up to 5kV_{RMS} (60s) of galvanic isolation; The CA-IS3050WG provides up to 7.5kV_{RMS} (60s) of galvanic isolation.


These transceivers operate up to 1Mbps data rate and feature integrated protection for robust communication, including current limit, thermal shutdown, and the extended ±58V fault protection on the CAN bus for equipment where overvoltage protection is required. The dominant timeout detection prevents bus lockup caused by controller error or by a fault on the TXD input. These CAN receivers also incorporate an input common-mode range (CMR) of ±30V, exceeding the ISO 11898 specification of -2V to +7V. All devices operate over -40°C to +125°C temperature range.

Device information

Part Number	Package	Package size (nominal value)
CA-IS3050G	SOIC8-WB (G)	5.85mm × 7.50mm
CA-IS3052G	301C8-WB (G)	3.63111111 ^ 7.30111111
CA-IS3050W	SOIC16-WB (W)	10.30mm × 7.50mm
CA-IS3052W	301C10-VVB (VV)	10.50111111 × 7.50111111
CA-IS3050U	DUB8 (U)	9.20mm × 6.62mm
CA-IS3050WG	SOIC8-WWB (WG)	6.40mm × 14.00mm

Ordering Information

Table 4-1 Ordering Information

Part Number	V _{CC1} (V)	V _{CC2} (V)	Data Rate (kbps)	Galvanic Isolation (V _{RMS})	Package				
CA-IS3050G	2.5~5.5	4.5~5.5	1000	5000	SOIC8-WB (G)				
CA-IS3050W	2.5~5.5	4.5~5.5	1000	5000	SOIC16-WB (W)				
CA-IS3052G	2.5~5.5	4.5~5.5	1000	5000	SOIC8-WB (G)				
CA-IS3052W	2.5~5.5	4.5~5.5	1000	5000	SOIC16-WB (W)				
CA-IS3050U	2.5~5.5	4.5~5.5	1000	3750	DUB8 (U)				
CA-IS3050WG	2.5~5.5	4.5~5.5	1000	7500	SOIC8-WWB (WG)				

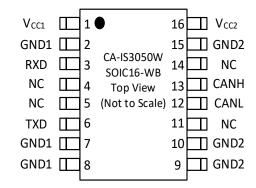
Contents

1	Feat	ures1	9	Deta	ailed Description	15
2	Appl	ications1		9.1	Overview	15
3	Gene	eral Description1		9.2	CAN Bus Status	15
4		ering Information2		9.3	Receiver	15
5		sion history3		9.4	Driver	15
6		Configuration and Functions5		9.5	Protection Functions	16
U				9	9.5.1 Signal Isolation and Protection	16
	6.1	CA-IS3050x Pin Configuration and Functions5		g	9.5.2 Thermal Shutdown Protection	16
	6.2	CA-IS3052x Pin Configuration and Functions6		g	9.5.3 Current Limiting Protection	16
7	Spec	ifications7		ç	9.5.4 Driver Dominant Timeout	16
	7.1	Absolute Maximum Ratings ¹ 7	10		Application Information	17
	7.2	ESD Ratings7	11		Package Information	19
	7.3	Recommended Operating Conditions7		11.1		
	7.4	Insulation Specifications8		11.2	_	
	7.5	Safety-Related Certifications9		11.3	DUB8 Package	21
	7.6	Thermal Information9		11.4	SOIC8-WWB Package	22
	7.7	Electrical Characteristics10	12		Soldering Information	23
	7.8	Switching Characteristics11	13		Tape and Reel Information	
8	Para	meter Measurement Information12	14		Important Statement	

5 Revision history

Revision Number	Description	Revised Date	Page Changed
Revision 0	initial version		N/A
	Update ESD Ratings		6
	Update Insulation Specifications		7
Revision A	Update Electrical Characteristics:		
	Changed CMTI typical value to 150kV/μs		7
	Changed CMTI minimum value to 100kV/μs		
Revision B	Update Safety-Related Certifications		8
Revision C	Added DUB8 package part		2
Revision D	Changed V _{ISO} and V _{ITOM} specs of the CA-IS3050U		7
Davidston E	Updated Tape and Reel Information		24 22
Revision E	Added Soldering Temperature Information		21, 22
	Updated pin configuration of the CA-IS3050U		4
	Changed the fault protection voltage on the bus to $\pm 58 \mathrm{V}$		6
	Updated ESD HBM protection voltage		6
	Updated TXD input specs.		6
Revision F	Updated thermal shutdown temperature		6
11011111	Changed the receiver output current to ± 4 mA		6
	Updated Table 7.7 Electrical Characteristics		9
	Updated Table 7.8 Switching Characteristics		10
	Removed Figure. 8-12		13
	Updated the typical application circuit		16

Version 1.10 Sha


Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.00	N/A		N/A
Version 1.01	Updated DUB8 package outline		18
Version 1.02	Updated Table 9-2 Driver Truth Table		14
Version 1.03	Updated Figure 10-2	2022/01/10	18
Version 1.04	Changed part with SOIC16-WB package: V _{IORM} to 1414V, V _{IOWM} AC RMS value to 1000V and DC value to 1414V.	2022/03/23	7
Version 1.05	Added V _{CC1} and V _{CC2} UVLO	2022/05/02	9
Version 1.06	Revised POD and Type reel information	2022/12/20	19, 20, 21, 23
Version 1.07	Updated UVLO description and added upper and lower limit	2023/04/27	10
Version 1.08	Update VDE information	2023/11/13	8, 9
Version 1.09	Update VDE, UL, CQC, TUV information Update the test conditions of V _{IOSM}	2024/04/16	1, 8, 9
	Add part number for SOIC8-WWB packaging: CA-IS3050WG		1, 2, 5, 8, 9, 10, 15, 22, 24
	Update section 7.3 V _{IH} and V _{IL} for recommended operating conditions		7
Version 1.10	Update safety-related certifications information	2024/07/02	8, 9
	Update test conditions and typical value for I _{CC1}		10
	Update recommended land pattern for SOIC8-WB and SOIC16-WB		19, 20
	Update POD for DUB8		21

6 Pin Configuration and Functions

6.1 CA-IS3050x Pin Configuration and Functions

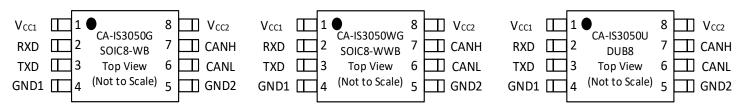


Figure 6-1 CA-IS3050 Pin Configuration

Table 6-1 CA-IS3050 Pin Configuration and Description

Pin name	Pin nu	umber	Typo	Description			
Fill Hallie	SOIC16	SOIC8/DUB8	Туре	Description			
V _{CC1}	1	1	Power supply	Power supply input for the logic side. Bypass V_{CC1} to GND1 with a $0.1\mu F$ capacitor as close to the device as possible.			
GND1	2, 7, 8	4	Ground	Logic side ground.			
RXD	3	2	Digital I/O	Receiver output. RXD is high when the bus is in the recessive state. RXD is low when the bus is in the dominant state.			
NC	4, 5, 11, 14			No connection, do not connect these pins and leave them open.			
TXD	6	3	Digital I/O	Driver data input. CANH and CANL are in the dominant state when TXD is low. CANH and CANL are in the recessive state when TXD is high.			
GND2	9, 10, 15	5	Ground	Bus side ground.			
CANL	12	6	Bus I/O	Low-level CAN differential line.			
CANH	13	7	Bus I/O	High-level CAN differential line.			
V _{CC2}	16	8	Power supply	Power supply input for the bus side. Bypass V_{CC2} to GND2 with a $0.1\mu\text{F}$ capacitor as close to the device as possible.			

6.2 CA-IS3052x Pin Configuration and Functions

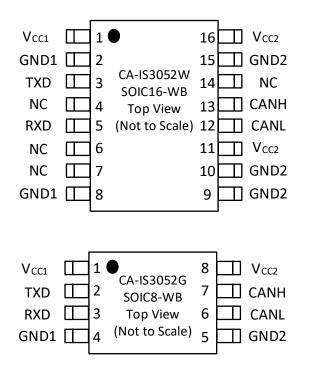


Figure. 6-2 CA-IS3052 Pin Configuration

Table 6-2 CA-IS3052 Pin Configuration and Description

Pin name	Pin number		Tyrno	Description
Pili lialile	SOIC16	SOIC8	Туре	Description
V _{CC1}	1	1	Power supply	Power supply input for the logic side. Bypass V_{CC1} to GND1 with $0.1 \mu F$
VCC1	4	1	1 Ower suppry	capacitor as close to the device as possible.
GND1	2, 8	4	Ground	Logic side ground.
TXD	3	2	Digital I/O	Driver data input. CANH and CANL are in the dominant state when TXD is low.
		Digital I/O	CANH and CANL are in the recessive state when TXD is high.	
NC	4, 6, 7, 14			No connection, do not connect these pins, leave them open.
RXD	5	3	Digital I/O	Receiver output. RXD is high when the bus is in the recessive state. RXD is low
KAD	5	5 3	Digital I/O	when the bus is in the dominant state.
GND2	9, 10, 15	5	Ground	Bus side ground.
CANL	12	6	Bus I/O	Low-level CAN differential line.
CANH	13	7	Bus I/O	High-level CAN differential line.
V	11 16	8	Dower supply	Power supply input for the bus side. Bypass V _{CC2} to GND2 with 0.1μF capacitor
V _{CC2}	11, 16	8	Power supply	as close to the device as possible.

Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.10

7 Specifications

7.1 Absolute Maximum Ratings¹

	Parameters	Minimum value	Maximum value	Unit
V _{CC1} or V _{CC2}	Power supply voltage ²	-0.5	6.0	V
V _I	Logic side voltage (TXD, refers to GND1)	-0.5	$V_{CC1} + 0.5^3$	V
V _{CANH} or V _{CANL}	Bus side single-ended voltage (CANH or CANL, refers to GND2)	-58	58	V
V _{CANH} – V _{CANL}	Bus side differential voltage (CANH to CANL)	-58	58	V
I ₀	Receiver output current	-15	15	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GND1 or GND2) and are peak voltage values.
- 3. Maximum voltage must not exceed 6V.

7.2 ESD Ratings

			Numerical value	Unit
	V _{ESD} Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, bus pins to GND2	±8000	
V_{ESD}		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all other pins ¹	±4000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±1500	

Notes:

- Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V CDM allows safe manufacturing of standard ESD control process.

7.3 Recommended Operating Conditions

	Param	eters	MIN	TYP	MAX	Unit
V _{CC1}	Logic side power voltage		2.5	3.3	5.5	V
V _{CC2}	Bus side power voltage		4.5	5	5.5	V
V _I or V _{IC}	Voltage at bus pins (separately	or common mode)	-30		30	V
V _{IH}	Input high voltage	Driver (TXD)	2			V
V _{IL}	Input low voltage	Driver (TXD)			0.8	V
V _{ID}	Differential input voltage		-30		30	V
I _{OH} High-level output	High lovel output ourrent	Driver	-70			nn A
	nigh-level output current	Receiver	-4			mA
	Low-level output current	Driver			70	1
I _{OL}		Receiver			4	mA
T _A	Ambient temperature		-40		125	°C
Tj	Junction temperature		-40		150	°C
P _D	Total power dissipation	V _{CC1} = 5.5V, V _{CC2} = 5.25V, T _A = 125°C, R _L =			200	mW
P _{D1}	Logic side power dissipation	60Ω, TXD input is 500 kHz, 50% duty			25	mW
P _{D2}	Bus side power dissipation	cycle square wave			175	mW
T _{J(shutdown)}	Thermal shutdown temperatur	e ¹		190		°C
Note:	·					1

1. Extended operation in thermal shutdown may affect device reliability.

Version 1.10

7.4 Insulation Specifications

	Paramotors	Tort conditions		Value		
	Parameters	Test conditions	U	G/W	WG	Unit
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	6.1	8	15	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	6.8	8	15	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	28	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	>600	>600	V
	Material group	Per IEC 60664-1	I	I	I	
		Rated mains voltage ≤ 150V _{RMS}	I-IV	I-IV	I-IV	
	Overvoltage category per IEC	Rated mains voltage ≤ 300V _{RMS}	1-111	I-IV	I-IV	
	60664-1	Rated mains voltage ≤ 600V _{RMS}	N/A	I-IV	I-IV]
		Rated mains voltage ≤ 1000V _{RMS}	N/A	1-111	I-IV	1
DIN V V	/DE V 0884-17:2021-10 ²		I.		I	-1
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	1414	2828	V _{PK}
V _{IOWM}	Maximum operating isolation	AC voltage; time-dependent dielectric breakdown (TDDB) test	1000	1000	2000	V_{RMS}
	voltage	DC voltage	1414	1414	2828	V_{DC}
V _{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t=60s (certified); V _{TEST} = 1.2 × V _{IOTM} , t=1s (100% product test)	7070	7070	10600	V _{PK}
V _{IMP}	Maximum impulse voltage	1.2/50-μs waveform per IEC 62368-1	6250	9846	9846	V_{PK}
V	Maximum surge isolation	VIOSM ≥ 1.3 x VIMP; Tested in oil (qualification test),	8125	12800	12800	V
V _{IOSM}	voltage³	1.2/50-μs waveform per IEC 62368-1	0125	12800	12800	V_{PK}
		Method a, after input/output safety test of the subgroup 2/3, $V_{ini} = V_{IOTM}, t_{ini} = 60s;$ $V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10s$	≤5	≤5	≤5	
q_{pd}	Apparent charge ⁴	Method a, after environmental test of the subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10s$ (SOIC8-WB and SOIC16-WB) $V_{pd(m)} = 1.3 \times V_{IORM}$, $t_m = 10s$ (DUB8)	≤5	≤5	≤5	pC
		Method b1, at routine test (100% production test) and preconditioning (type test) $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1s;$ $V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1s \text{ (certificated, SOIC8-WB and SOIC16-WB)}$ $V_{pd(m)} = 1.5 \times V_{IORM}, t_m = 1s \text{ (certificated, DUB8)}$	≤5	≤5	≤5	
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1MHz$	~0.5	~0.5	~0.5	pF
	r · ·	V _{IO} = 500V, T _A = 25°C	>1012	>1012	>1012	
R _{IO}	Isolation resistance ⁵	$V_{10} = 500V, 100^{\circ}C \le T_A \le 125^{\circ}C$	>1011	>1011	>1011	Ω
		V _{IO} = 500V at T _S = 150°C	>109	>109	>109	1
	Pollution degree		2	2	2	†

Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.10

UL 1577							
V _{ISO} Maximum withstanding	$V_{TEST} = V_{ISO}$, t = 60s (qualification)	3750	5000	7500	V.		
isolation voltage	$V_{TEST} = 1.2 \times V_{ISO}$, t = 1s (100% production test)	3730	3000	7300	V _{RMS}		

NOTE:

- Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- 2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- 4. Apparent charge is electrical discharge caused by a partial discharge (pd).
- 5. All pins on each side of the barrier tied together creating a two-terminal device.

7.5 Safety-Related Certifications

VDE	UL	cqc	TUV
Certified according to DIN EN IEC60747-	Certified according to UL	Certified according to	Certified according to
17(VDE 0884-17):2021-10;	1577 Component	GB4943.1-2011	EN61010-1:2010+A1
EN IEC60747-17:2020+AC:2021	Recognition Program		
Reinforced Isolation (SOIC8-WB/ SOIC16-WB):	Single protection	SOIC8-WB/SOIC16-WB:	Isolation rating:
VIORM: 1414VPK	SOIC8-WB: 5000V _{RMS}	Reinforced insulation,	SOIC8-WB: 5000V _{RMS}
Vютм: 7070Vрк	SOIC16-WB: 5000V _{RMS}	(Altitude ≤ 5000 m)	SOIC16-WB: 5000V _{RMS}
VIOSM: 12800VPK	DUB8: 3750V _{RMS}		DUB8: 3750V _{RMS}
Basic Isolation (DUB8):			
VIORM: 1414VPK			
VIOTM: 7070VPK			
VIOSM: 8125VPK			
Reinforced Isolation (SOIC8-WWB):			
VIORM: 2828VPK			
Vютм: 10600Vрк			
VIOSM: 12800VPK			
Certificate number:	Certificate number:	Certificate number:	Certificate number:
Reinforced Isolation Certificate: 40057278	E511334	SOIC8-WB: CQC24001434134	AK 50591819 0001
Basic Isolation Certificate: 40052786		SOIC16-WB: CQC23001406424	

7.6 Thermal Information

	Heat meter	SOIC8-WB	SOIC16-WB	DUB8	SOIC8-WWB	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	110.1	86.5	73.3	68.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	51.7	49.6	63.2	33.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	66.4	49.7	43.0	41.7	°C/W
ψл	Junction-to-top characterization parameter	16.0	32.3	27.4	12.4	°C/W
ψյв	Junction-to-board characterization parameter	64.5	49.2	42.7	32.6	°C/W

7.7 Electrical Characteristics

Over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with $V_{CC1} = V_{CC2} = 5V$.

	Parameters	,	Test conditions	MIN	TYP	MAX	Unit	
Powers	supply voltage							
V _{CC1 UVL}			V _{CC1}	1.95	2.24	2.375		
V _{CC1 UVL}			V _{CC1}	1.88	2.10	2.325		
V _{CC2 UVL}	•		V _{CC2}	3.9	4.2	4.4	V	
V _{CC2 UVL}	· · · · · · · · · · · · · · · · · · ·		V _{CC2}	3.8	4.0	4.25		
	supply current			1				
			$V_1 = V_{CC1}, V_{CC1} = 5V$		1.5	2.8		
I _{CC1} L	ogic side power supply current		$V_i = 0V, V_{CC1} = 5V$		2.3	3.6	mA	
		Dominant	$V_1 = 0V$, $R_L = 60\Omega$		44	73		
I _{CC2} B			$V_1 = V_{CC1}$		3	12	mA	
Driver			-1 -001					
		CANH	$V_I = 0V$, $R_L = 60\Omega$; see Figure 8-1 and	2.75	3.4	4.5		
V _{O(D)} B	us output voltage (dominant)	CANL	Figure 8-2.	0.5		2.25	V	
		0,1112	$V_l = 2V$, $R_L = 60\Omega$; see Figure 8-1 and					
V _{O(R)} Bus output voltage (recessive)			Figure 8-2.	2	2.5	3	V	
		$V_1 = 0V$, $R_L = 60\Omega$; see Figure 8-1 and						
			Figure 8-2.	1.5		3	V	
V _{OD(D)} D	Differential output voltage (dom	inant)	$V_1 = 0V$, $R_L = 45\Omega$; see Figure 8-1 and					
			Figure 8-2.	1.4		3	V	
			$V_1 = 2V$, $R_L = 60\Omega$; see Figure 8-1 and					
Vonen D	Differential output voltage (rece	cciva)	Figure 8-2.	-12		12	mV	
VOD(R) Differential output voltage (recessive)		V _I = 2V, no-load.	-0.5		0.05	V		
V _{OC(D)} Common mode output voltage (dominant)			V = 2V, 110-10au.	2	2.5	3	V	
		See Figure 8-7		0.3	3	V		
		V ₁ = 2V		0.5	20			
I _{IH} High-level input current, TXD input			$V_1 = 0.8V$	-20		20	μΑ	
I _{IL}	Low-level input current, TXD inp	Jul	•	-20			μΑ	
			TXD = Low, $V_{CANH} = -30V$, CANL open; see	-105	-72			
			Figure 8-10.					
			TXD = High, V _{CANH} = 30V, CANL open; see	3	5			
I _{OS(SS)} S	Short-circuit steady-state outpu	t current	Figure 8-10.	 			mA	
			TXD = High, $V_{CANL} = -30V$, CANH open; see	- 5	-1.5			
			Figure 8-10.					
			TXD = Low, V _{CANL} = 30V, CANH open; see Figure 8-10.		90	105		
CNATI	Common Modo Transiant Immi	ınitı	_	+100	±1E0		k\//uc	
	Common Mode Transient Immu	arnty	$V_I = 0V$ or V_{CC1} ; see Figure 8-11.	±100	±150		kV/μs	
Receive		ld voltage	1	1		0.9	V	
	ositive-going bus input thresho		20V ≤ V _{CM} ≤ 20V	0.5		0.9	V	
	legative-going bus input thresh			0.5		1.0	-	
	V _{IT+} Positive-going bus input threshold voltage		$-30V \le V_{CM} \le 30V$	0.1		1.0	V	
	V _{IT} . Negative-going bus input threshold voltage			0.4	120		V	
V _{HYS} I	nput threshold hysteresis voltag	ge	V 5V 1 4 2 4 5 2 5	1	120		mV	
			V_{CC1} = 5V, I_{OH} = -4mA; see Figure 8-5.	V _{CC1} -	4.6			
			V 5V I 2004 5' 0.5	0.8			V	
V _{OH} High-level output voltage			$V_{CC1} = 5V$, $I_{OH} = -20\mu A$; see Figure 8-5.	V _{CC1} -	5			
			V 22VI 1 1 5	0.1				
			$V_{CC1} = 3.3V$, $I_{OH} = -4mA$; see Figure 8-5.	V _{CC1} -	3.1			
			V 2 2 V 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8			V	
			$V_{CC1} = 3.3V$, $I_{OH} = -20\mu$ A; see Figure 8-5.	V _{CC1} -	3.3			
				0.1				

Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.10

V _{OL} Low-level output voltage		I _{OL} = 4mA; see Figure 8-5.		0.2	0.4	V
VOL	Low-level output voltage	$I_{OL} = 20\mu\text{A}$; see Figure 8-5.		0	0.1	V
Cı	CANH or CANL input capacitance to ground	$V_{TXD} = 3V$, $V_1 = 0.4 \times \sin(2\pi ft) + 2.5V$, $f =$	20			pF
CANH OF CANE IIIput capacita	CANTI OF CANE Input capacitance to ground	1MHz		20		
C _{ID}	Differential input capacitance	$V_{TXD} = 3V$, $V_1 = 0.4 \text{ x sin}(2\pi\text{ft})$, $f = 1\text{MHz}$		10		pF
R _{IN}	CANH and CANL input capacitance	$V_{TXD} = 3V$	15		40	kΩ
R _{ID}	Differential input resistance	$V_{TXD} = 3V$	30		80	kΩ
R _{I(m)}	Input resistance matching	V _{CANH} = V _{CANI}	-5%	0%	5%	
	$(1 - [R_{IN(CANH)} / R_{IN(CANL)}]) \times 100\%$	VCANH - VCANL	-5%	υ%	3%	
CMTI	Common mode transient immunity	$V_I = 0V$ or V_{CC1} ; see Figure 8-11.	±100	±150		kV/μs

7.8 Switching Characteristics

Over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC1} = V_{CC2} = 5V.

	Parameters	Test conditions	MIN	TYP	MAX	Unit	
Device	· · · · · · · · · · · · · · · · · · ·						
t _{loop1}	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	Soo Figuro 9 9	110		210	ns	
t _{loop2}	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive	See Figure 8-8.	110		210	ns	
Driver							
t _{PLH}	TXD propagation delay (recessive to dominant)			50			
t _{PHL}	TXD propagation delay (dominant to recessive)	See Figure 8-4.	65			nc	
t _r	Differential driver output rise time			55		ns	
t _f	Differential driver output fall time			60			
t _{TXD_DTC}	o ¹ TXD dominant timeout	C _L = 100pF; see Figure 8-9.	2	5	8	ms	
Receiv	er						
t _{PLH}	RXD propagation delay (recessive to dominant)			105			
t _{PHL}	RXD Propagation delay (dominant to recessive)	saa Figura 9 6		75]	
t _r	RXD Output signal rise time	see Figure 8-6.		5		ns	
t _f	RXD Output signal fall time	, ,					

Note:

^{1.} The TXD dominant timeout (t_{TXD_DTO}) disables the driver of the transceiver once the TXD has been dominant longer than (t_{TXD_DTO}) which releases the bus lines to recessive preventing a local failure from locking the bus dominant.

8 Parameter Measurement Information

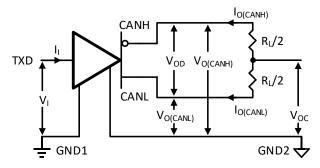


Figure. 8-1 Driver Voltage and Current Definition

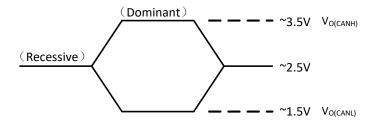


Figure. 8-2 Bus Logic State Voltage Definition

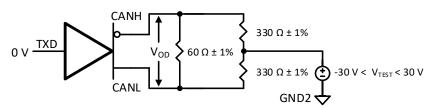
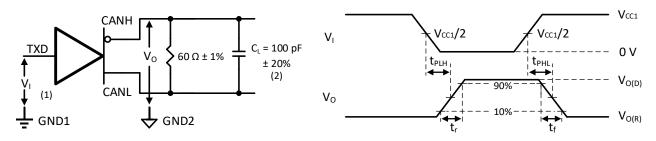



Figure. 8-3 Driver V_{OD} with Common Mode Loading Test Circuit

Notes:

- 1. The input pulse is supplied by a generator with characteristics: $PRR \le 125kHz$, 50% duty cycle; rise time $t_f \le 6ns$, fall time $t_f \le 6ns$; $Z_0 = 50\Omega$.
- $2. \hspace{0.5cm} \text{Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.} \\$

Figure. 8-4 Driver Test Circuit and Timing Diagram

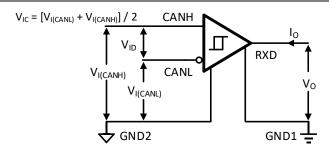
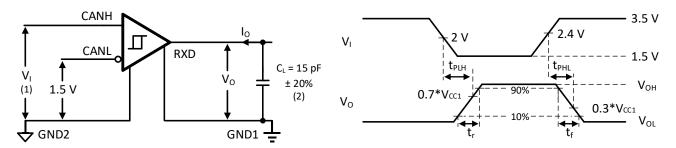



Figure. 8-5 Receiver Voltage and Current Definition

Notes:

- 1. The input pulse is supplied by a generator with characteristics: $PRR \le 125kHz$, 50% duty cycle; rise time $t_f \le 6ns$, fall time $t_f \le 6ns$; $Z_0 = 50\Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-6 Receiver Test Circuit and Timing Diagram

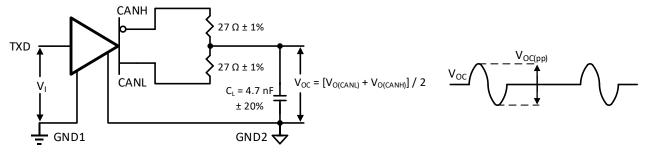


Figure. 8-7 Peak-to-Peak Output Voltage Test Circuit and Waveform

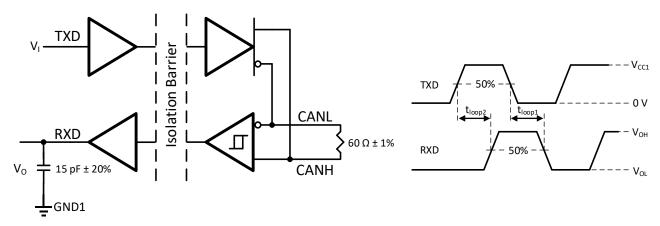
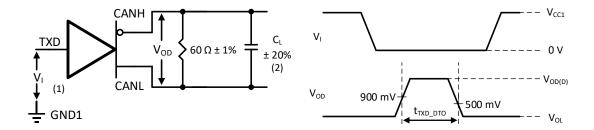



Figure. 8-8 TXD to RXD Loop Delay

Notes:

- 1. The input pulse is supplied by a generator with characteristics: $PRR \le 125kHz$, 50% duty cycle; rise time $t_f \le 6ns$, fall time $t_f \le 6ns$; $Z_0 = 50\Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-9 Transmitting Dominant Timeout Timing Diagram

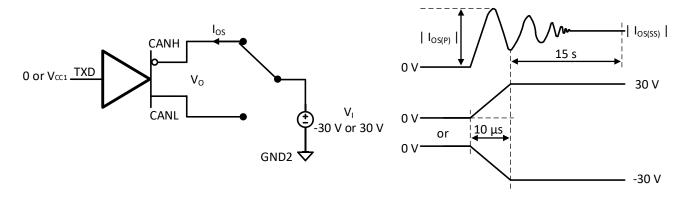


Figure. 8-10 Driver Short Circuit Current Test Circuit and Measurement

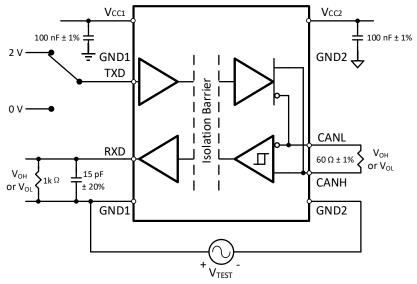


Figure. 8-11 Common-Mode Transient Immunity Test Circuit

Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.10

9 Detailed Description

9.1 Overview

The CA-IS305x isolated controller area network (CAN) transceivers provide up to $3.75 kV_{RMS}$ (DUB8), $5kV_{RMS}$ (SOIC8-WB/SOIC16-WB) and $7.5 kV_{RMS}$ (SOIC8-WWB) of galvanic isolation between the cable side (bus side) of the transceiver and the controller side (logic side). These devices feature up to $\pm 150 - kV/\mu s$ common mode transient immunity, allowing up to 1-Mbps communication data rare across an isolation barrier. Robust isolation coupled with high standoff voltage and increased speeds enables efficient communication in noisy environments, making them ideal for communication with the microcontroller in a wide range of applications such as solar inverters, circuit breakers, motor drives, PLC communication modules, telecom rectifiers, elevators, HVACs and EV charging infrastructures. Interfacing with CAN protocol controllers is simplified by the 2.5V to 5.5V wide supply voltage range (V_{CC1}) on the controller side of the device. This supply voltage sets the interface logic levels between the transceiver and controller. The supply voltage range for the CAN bus side of the device is 4.5V to 5.5V (V_{CC2}). The receiver input common-mode range is $\pm 30V$, exceeding the ISO 11898 specification of -2V to +7V, and the fault tolerant is up to $\pm 58V$. Dominant timeout prevents the bus from being blocked by a hung-up microcontroller, and the outputs CANH and CANL are short-circuit current-limited, protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

9.2 CAN Bus Status

The CAN bus has two states: dominant and recessive. In the dominant state (a zero bit, used to determine message priority), CANH - CANL are defined to be logic '0' when the voltage across them is between +1.5V and +3V (higher than 1V). In the recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic '1' when differential voltage is between -120mV and +12mV, or when it is near zero (lower than 0.4V). CAN bus status is shown in *Figure 8-2*.

9.3 Receiver

The receiver reads the differential input from the bus line (CANH and CANL) and transfers this data as a single-ended output RXD to the CAN controller. The internal comparator senses the difference voltage $V_{DIFF} = (V_{CANH} - V_{CANL})$, with respect to an internal threshold of 0.7V. If $V_{ID} \ge V_{IT+}$, a logic-low is present on RXD; If $V_{ID} \le V_{IT-}$, a logic-high is present. The input common-mode range is $\pm 30V$. RXD is a logical high when CANH and CANL are shorted or terminated or un-driven. Truth table is shown in *Table 9-1*.

VID=VCANH-VCANL **BUS STATE RXD** $V_{CM} = -20V \text{ to } +20V$ $V_{CM} = -30V \text{ to } +30V$ $V_{\text{ID}} \ge 0.9 V$ $V_{ID} \ge 1V$ **Dominant** Low $0.5V < V_{ID} < 0.9V$ $0.4V < V_{ID} < 1V$ Indeterminate Indeterminate $V_{ID} \le 0.5V$ $V_{ID} \le 0.4V$ Recessive High Open (V_{ID} ≈ 0V) Open High

Table 9-1 Receiver Truth Table

9.4 Driver

Table 9-2 Driver Truth Table¹

V	V _{CC2}	INPUT	TXD LOW-LEVEL	OUTI	BUS STATE	
V _{CC1}	V CC2	TXD ²	KEEP TIME	CANH	CANL	BUSSIAIE
		Low	< t _{TXD_DTO}	High	Low	Dominant
Power up	Power up	Low	> t _{TXD_DTO}	V _{CC2} /2	V _{CC2} /2	Recessive
		High or Open	Х	V _{CC2} /2	V _{CC2} /2	Recessive
Power up	Power down	Х	Х	Hi-Z	Hi-Z	Hi-Z
Power down	Power up	Х	Х	V _{CC2} /2	V _{CC2} /2	Recessive

Note:

- 1. X = Don't care; Hi-Z = high impedance.
- The input of TXD is weakly pulled-up internally.

Version 1.10 Shanghai Chipanalog Microelectronics Co., Ltd.

The driver converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the bus lines CANH and CANL. The truth table for the driver is shown in *Table 9-2*.

CANH and CANL outputs are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that sets the driver outputs in a high-impedance state.

9.5 Protection Functions

9.5.1 Signal Isolation and Protection

The CA-IS305x devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allowing data transmission between the controller side and cable side of the transceiver with different power domains. The driver outputs/receiver inputs are also protected from ±20kV electrostatic discharge (ESD) to GND2 on the bus side, as specified by the Human Body Model (HBM).

9.5.2 Thermal Shutdown Protection

If the junction temperature of the CA-IS305x device exceeds the thermal shutdown threshold T_{J(shutdown)} (190°C, typ.), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops to normal operation temperature range of the device.

9.5.3 Current Limiting Protection

The CA-IS305x protect the driver output stage against a short-circuit to a positive or negative voltage by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The driver returns to normal operation once the short is removed.

9.5.4 Driver Dominant Timeout

The CA-IS305x devices feature a driver dominant timeout (t_{TXD_DTO}) that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater than t_{TXD_DTO} , the driver is disabled, releasing the bus to a recessive state. After a dominant timeout fault, the driver is re-enabled when receiving a rising edge at TXD. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. So the minimum transmitted data rate can be calculated as: 11bits / t_{TXD_DTO} = 11bits / 2ms = 5.5kbps. The driver dominant timeout limits the minimum possible data rate of the CA-IS305x to 5.5kbps.

10 Application Information

The CAN bus has been a very popular serial communication standard in the industry due to its excellent prioritization and arbitration capabilities. In systems with different voltage domains, isolation is typically used to protect the low voltage side from the high voltage side in case of any faults. The CA-IS305x family of devices are ideal for these kinds of applications. The typical application circuit is shown in *Figure 10-1*.

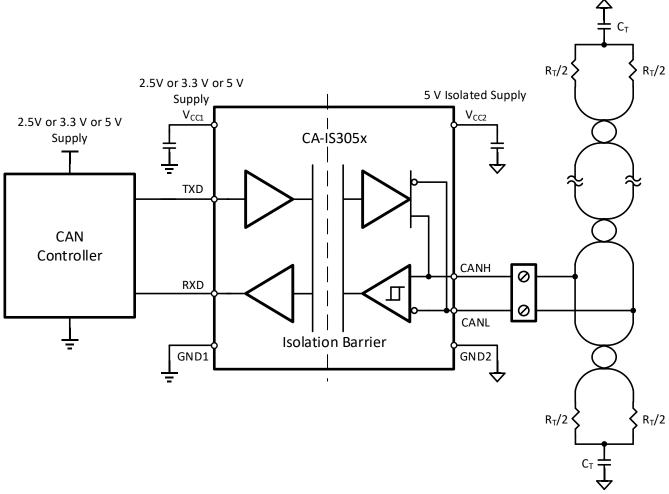
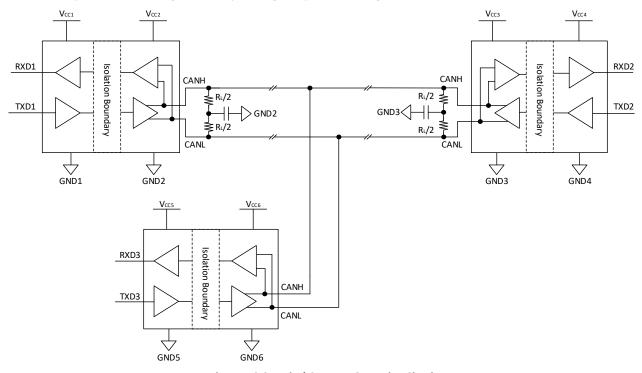


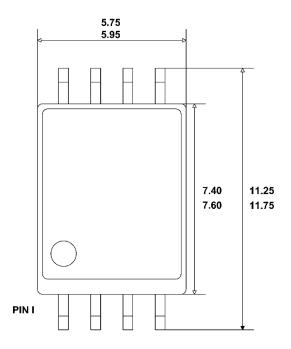
Figure. 10-1 Typical Application Circuit

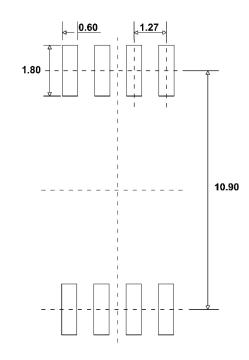
These devices can operate up to 1Mbps data rate. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors. For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. The ISO11898 Standard specifies a maximum of 30 nodes. However, with careful design, and consider of high input impedance of the CA-IS305x, designers can have many more nodes on the CAN bus. The differential input resistance of the CA-IS305x is a minimum of $30k\Omega$. If 110 CA-IS305x transceivers are in parallel on a bus, this is equivalent to a 273Ω differential load. That transceiver load of 273Ω in parallel with the 60Ω (the two 120Ω termination resistors in parallel) gives a total 49Ω load on the bus. The driver differential output of CA-IS305x devices is specified to provide at least 1.5V with a 60Ω load, and additionally specified with a differential output of 1.4V with a 45Ω load. Therefore, the CA-IS305x theoretically can support up to 110 transceivers on a common bus with design margin.

In multidrop CAN applications, it is important to maintain a single linear bus of uniform impedance that is properly terminated at each end. A star, ring, or tree configuration should never be used. Any deviation from the end-to-end wiring scheme creates a stub. High-speed data edges on a stub can create reflections back down to the bus. These reflections can cause data errors by eroding the noise margin of the system. Although stubs are unavoidable in a multidrop system, care should be taken to keep these stubs as short as possible, especially when operating with high data rates. The typical CAN bus operating circuit is shown in *Figure 10-2*. Termination may be a single 120Ω resistor at each end of the bus; or split termination, the two 60Ω termination resistors in parallel may be used if filtering and stabilization of the common mode voltage of the bus is desired.

It is recommended to design an isolation channel underneath the isolator that is free from ground and signal planes. Any galvanic or metallic connection between the bus side and logic side would lower down the isolation rating. To make sure device operation is reliable at all data rates, at least a $0.1\mu F$ low-ESR decoupling capacitor between V_{CC1} and GND1 and between V_{CC2} and GND2 respectively is recommended. The capacitors should be located as close as possible to the device to minimize inductance and keep the value enough at the operating temperature range.

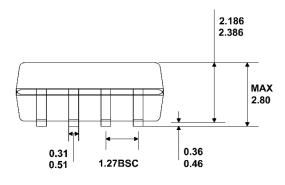


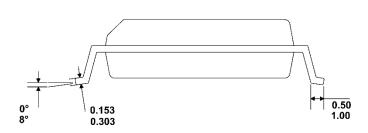

Figure. 10-2 Typical CAN Bus Operating Circuit



11 Package Information

11.1 SOIC8-WB Package

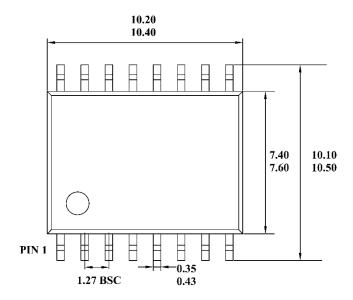

The values for the dimensions are shown in millimeters.

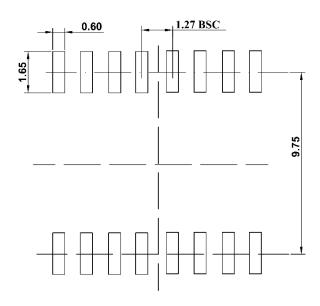


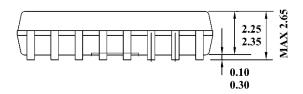
TOP VIEW

RECOMMENDED LAND PATTERN

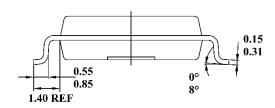
FRONT VIEW


LEFT-SIDE VIEW


Figure. 11-1 POD of SOIC8-WB (G)


11.2 SOIC16-WB Package

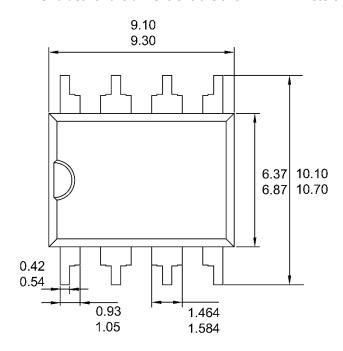
The values for the dimensions are shown in millimeters.

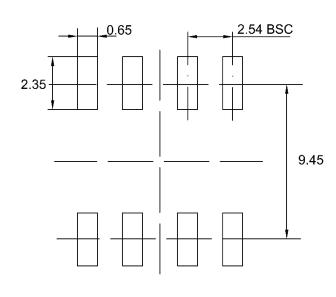


TOP VIEW

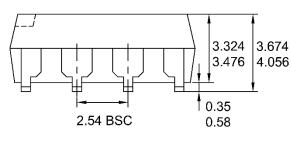
RECOMMENDED LAND PATTERN

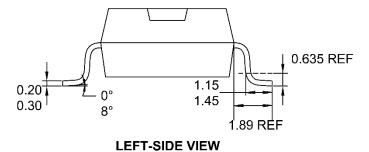
FRONT VIEW


LEFT SIDE VIEW


Figure. 11-2 POD of SOIC16-WB (W)

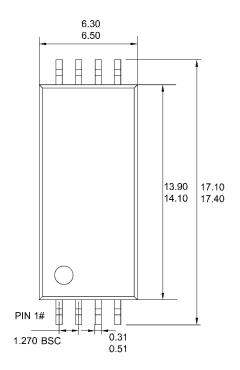
11.3 DUB8 Package

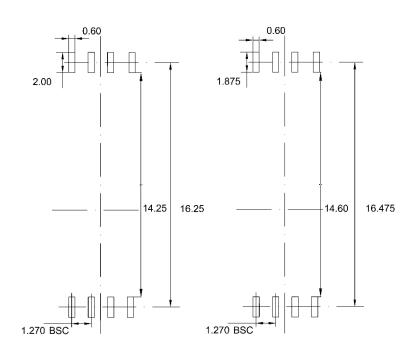

The values for the dimensions are shown in millimeters.



TOP VIEW

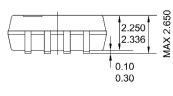
RECOMMEDNED LAND PATTERN


FRONT VIEW


Figure. 11-3 POD of DUB8 (U)

11.4 SOIC8-WWB Package

The values for the dimensions are shown in millimeters.



STANDARD

PCB CLEARANCE & CREEPAGE OPTIMIZED

TOP VIEW

FRONT VIEW

RECOMMENDED LAND PATTERN

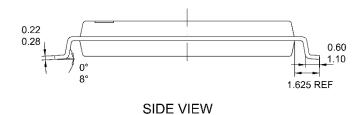
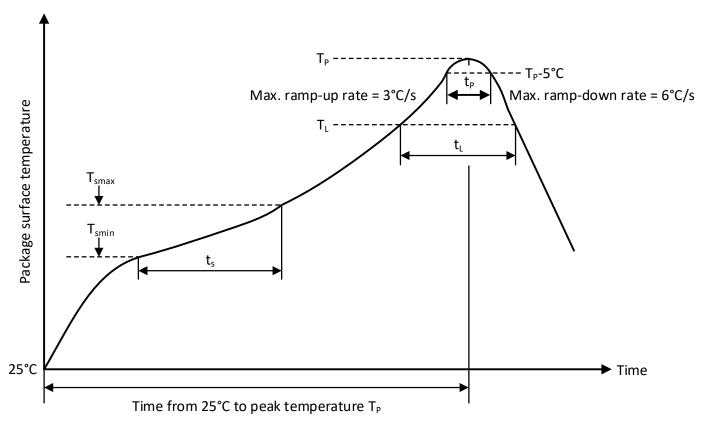


Figure. 11-4 POD of SOIC8-WWB (WG)

12 Soldering Information



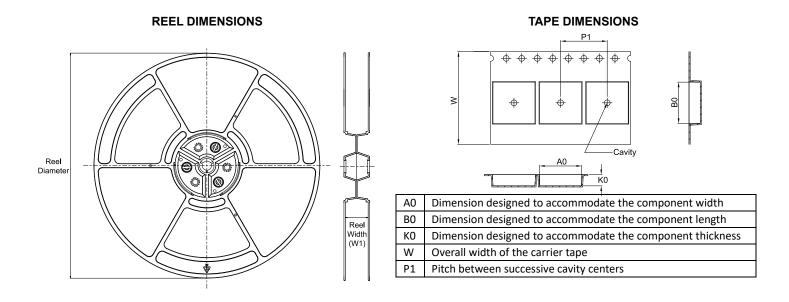
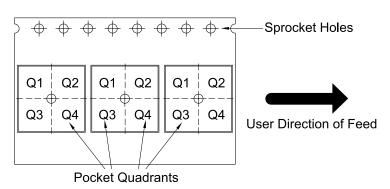

Figure. 12-1 Soldering Temperature (reflow) Profile

Table. 12-1 Soldering Temperature Parameter


Profile Feature	Pb-Free Soldering
Ramp-up rate ($T_L = 217^{\circ}C$ to peak T_P)	3°C/s max
Time t _s of preheat temp (T _{smin} = 150°C to T _{smax} = 200°C)	60~120 seconds
Time t _L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T _P to T _L = 217°C)	6°C/s max
Time from 25°C to peak temperature T _P	8 minutes max

13 Tape and Reel Information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3050W	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3050G	SOIC	G	8	1000	330	16.4	11.95	6.15	3.20	16.00	16.00	Q1
CA-IS3052W	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3052G	SOIC	G	8	1000	330	16.4	11.95	6.15	3.20	16.00	16.00	Q1
CA-IS3050U	DUB	U	8	800	330	24.4	10.90	9.60	4.30	16.00	24.00	Q1
CA-IS3050WG	SOIC	WG	8	500	330	16.4	17.70	6.80	2.80	24.00	16.00	Q1

Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.10

14 Important Statement

The above information is for reference only and intended to help Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com