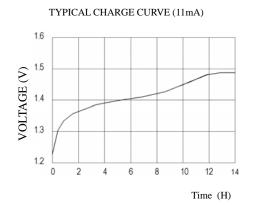
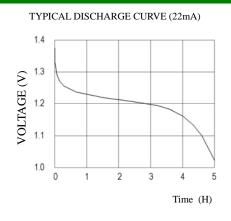
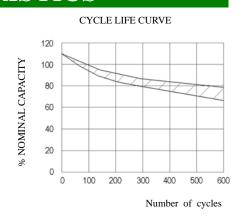
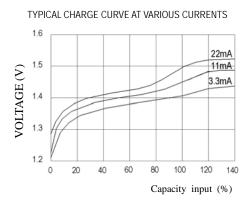
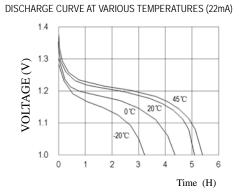

CHEAPE TECHNOLOGY INTERNATIONAL LIMITED. 100H Ni-MH BUTTON CELL

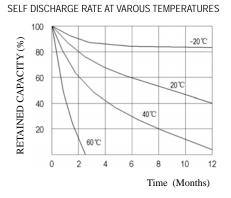

TECHNICAL DATA






Model	el Voltage Capacity		Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
100H	1.2V	110mAh	3.3~5.5mA	11mA	14~16h	22mA	3.6g


TECHNICAL CHARACTERISTICS



TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries

Model: 100H

2. CELL AND TYPE

2.1 Cell :Sealed Ni-MH Button Cell

2.2 Type :Button type

2.3 Size type: 1.2V

3. RATINGS

3.1 Nominal voltage : 1.2V

3.2 Nominal capacity : 110mAh/0.2CmA

3.3 Typical weight : 3.6g

3.4 Standard charge : 11mA×14hours3.5 Rapid charge : 22mA×6hours

Trickle current : 3.3mA

3.6 Discharge cut-off voltage: 1.0V

3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge $0\sim+45^{\circ}\text{C}$ Rapid charge $+10\sim+45^{\circ}\text{C}$ Trickle charge $0\sim+45^{\circ}\text{C}$ Discharge $-10\sim+45^{\circ}\text{C}$

3.8 Temperature range for storage (Humidity: Max.85%)

Within 2 years $-20\sim +35^{\circ}\text{C}$ Within 6 months $-20\sim +45^{\circ}\text{C}$ Within a month $-20\sim +45^{\circ}\text{C}$ Within a week $-20\sim +55^{\circ}\text{C}$

4. ASSEMBLY & DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery)

ambient conditions

Temperature: $+25\pm5^{\circ}$ C Humidity: $60\pm20\%$

Note 1

 $\begin{array}{ll} \text{Standard charge} & : 11 \text{mA} \times 14 \text{hours} \\ \text{Standard discharge} & : 0.2 \text{C to } 1.0 \text{V} \end{array}$

5.2 TEST METHOD & PERFORMANCE

5.2 TEST WETHOS & TEM ORIVINIVEE				
Test	Unit	Specification	Conditions	Remarks
Capacity	mAh	≥110	Standard	Up to 3 cycies
			Charge/discharge	Are allowed
Open Circuit	Voltage	≥1.3	After 1 hour standard	
Voltage(OCV)	(V)		Charge	
Internal	mΩ/cell	≤900	Upon fully charge	
Impedance			(1KHz)	

High rate Minute		≥60	Standard charge	
Discharge(0.5C)			Before discharge	
Discharge mA		55	Maximum continuous	
Current			Discharge current	
Over charge		No leakage	3.3mA(0.03C) charge	
		Not explosion	one year	
Charge	mAh	88	Standard charge;	
Retention			Storage: 28 days;	
			Standard discharge	
Cycle Life	Cycle	≥500	IEC285(1993)4.4.1	
Leakage		No leakage nor	Fully charge at 11mA,	
		Deformation	Stand 14 days	

Note 2 IEC285(1993)4.4.1 cycle life

Cycle number	Charge	Rest	Discharge	
1-50	1-50 11mA for 14h		22mA for 5h	

50 cycles of test as in the following table condition is repeated, The discharge time of the $100^{th},200^{th},400^{th},500^{th}$ is more than 5 hours. (Ambient temperature is $20\pm5^{\circ}$ C)

5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of $33\pm3\,^{\circ}\mathrm{C}$ and a relative humidity of $80\pm5\%$

6. OTHERS

- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity
- 6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell

7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at $20\pm5^{\circ}$ C at a constant current of 0.2CmA to a final voltage of 1.0V/cell.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.