
# +15kV ESD Protected 500kbps Data Rate

# Polarity Adaptation RS-485 SSP485N

#### **General Description**

The SSP485N is a half-duplex high speed transceiver for RS-485 communication. IC contains one driver and one receiver, It has adaptive function.

The SSP485N has a fail-safe circuit, ensure logical high level of receiver output when receiver input is open or short. It has a slew-rate-limited driver that reduces EMI and reflection due to improperly matched terminal cables, and achieves error-free data transmission of up to 500kbps.

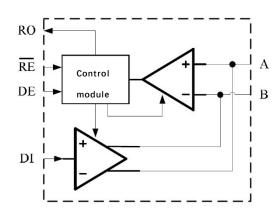


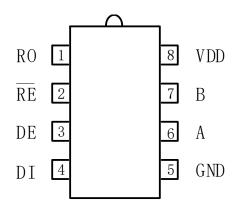
The SSP485N receiver has 1/8 unit load input impedance, allows up to 256 devices can be attached to the bus.

#### **Features**

- I/O pin ESD protection: +15kV HBM IEC 61000-4-2
   Other pins have level 3 ESD protection: >+8kV HBM
- Fractional unit load allows up to 256 devices on the bus
- Adaptive connection function: reverse connection communication of communication ports A and B is realized, polarity recognition time is 78ms
- Operating voltage: +5V(Typical.)
- Low current shutdown mode operating current: 1nA
- Current limiting and thermal turn-off function can be used for driver overload protection
- SOP8 package

## **Applications**


- Intelligent instrument
- Industrial process control
- Building automation network
- Motor control




# **Order specification**

| Part No | Package | Manner of Packing | Devices per bag/reel |
|---------|---------|-------------------|----------------------|
| SSP485N | SOP8    | Reel              | 2500                 |

# **Block Diagram and Pin Arrangement Diagram**





# Pin Assignment

| Pin No. | Pin Name | Description                                               | I/O |
|---------|----------|-----------------------------------------------------------|-----|
|         |          | Receiver output: If A is connected to bus A,              |     |
|         |          | If A-B≥-0.1V, RO will be high;                            |     |
| 1       | RO       | If A-B≤-0.1V, RO will be low;                             | 0   |
|         |          | If A and B are open or shorted,RO will be high.           |     |
|         |          | If A is connected to bus B, RO will on the contrary.      |     |
|         |          | Receiver output enable:                                   |     |
| 2       | RE       | RO is enabled when $\overline{\text{RE}}$ is low;         | 1   |
|         |          | RO is high impedance when $\overline{\text{RE}}$ is high. |     |
|         |          | Driver output enable:                                     |     |
| 3       | DE       | The driver outputs,A and B are enabled by bringing DE     | 1   |
|         |          | high. They are high impedance when DE is low.             |     |
|         |          | Driver input: If A is connected to bus A,                 |     |
|         |          | A low on DI forces output A low and output B high.        |     |
| 4       | DI       | Similarly, a high on DI forces output A high and output B | 1   |
|         |          | low.                                                      |     |
|         |          | If A is connected to bus B, A and B will on the contrary. |     |
| 5       | GND      | Ground                                                    |     |
| 6       | А        | Receiver input and driver output                          | I/O |
| 7       | В        | Receiver input and driver output                          | I/O |
| 8       | VDD      | Supply voltage                                            |     |



### **Functional Description**

The SSP485N is a half-duplex high speed transceiver for RS-485 communication. IC contains one driver and one receiver. It has adaptive function, AB terminal reverse connection can also communicate normally. The SSP485N receiver has 1/8 unit load input impedance, allows up to 256 devices can be attached to the bus.

#### **Description of circuit function control**

| Contr | ol pin | Function      |
|-------|--------|---------------|
| RE    | DE     | Function      |
| L     | X      | Receiver mode |
| Х     | Н      | Driver mode   |

#### **Receiver Truth Table**

|    | Output |              |    |
|----|--------|--------------|----|
| RE | DE     | A - B        | RO |
| L  | X      | ≥-0.1V       | Н  |
| L  | X      | ≤-0.1V       | L  |
| L  | X      | Open/shorted | Н  |
| Н  | Н      | X            | Z  |
| Н  | L      | X            | Z  |

#### **Driver Truth Table**

| Input |    |    | Out | put |  |
|-------|----|----|-----|-----|--|
| RE    | DE | DI | В   | Α   |  |
| X     | Н  | Н  | L   | Н   |  |
| X     | Н  | L  | Н   | L   |  |
| L     | L  | X  | Z   | Z   |  |
| Н     | L  | X  | Z   |     |  |

## **Absolute Maximum Ratings**

Unless specified otherwise, Tamb= 25°C

| Parameter                  | Symbol                                  | Value                        | Unit |
|----------------------------|-----------------------------------------|------------------------------|------|
| Supply Voltage             | $V_{DD}$                                | -0.3~7                       | V    |
| Input / Output Voltage     | V <sub>IN</sub> /V <sub>OUT</sub>       | GND-0.3~V <sub>DD</sub> +0.3 | V    |
| A/B Input / Output Voltage | V <sub>INA/B</sub> /V <sub>OUTA/B</sub> | -13~15                       | V    |
| Operating Temperature      | T <sub>amb</sub>                        | -40~85                       | °C   |
| Storage Temperature        | T <sub>stg</sub>                        | -65~150                      | °C   |



## **DC Electrical Characteristics**

Unless specified otherwise, VDD=5V $\pm$ 5%, Tamb= 25°C

| Parameter                                                                                 | Symbol                   | Test Co                                      | nditions             | Min  | Тур  | Max | Unit |
|-------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------|----------------------|------|------|-----|------|
| Operating voltage                                                                         | Vcc                      |                                              |                      | 4.5  |      | 5.5 | V    |
| Driver                                                                                    | T                        | ı                                            |                      | _    |      |     |      |
| Differential driver output                                                                | V <sub>OD1</sub>         | No load                                      |                      |      |      | 5   | V    |
| Differential driver output                                                                | $V_{\text{OD2}}$         | $R=50\Omega^{(1)}$                           |                      | 2.0  | 3.5  |     | V    |
|                                                                                           | <b>V</b> OD2             | $R=27\Omega^{(1)}$                           |                      | 1.5  | 2.7  |     | V    |
| Change in magnitude of driver differential output voltage for complementary output states | ΔV <sub>OD</sub>         | R=50Ω or 27                                  | $7\Omega^{(1)}$      |      | 0.01 | 0.2 | V    |
| Driver common-mode output voltage                                                         | Voc                      | R=50Ω or 23                                  | $7\Omega^{(1)}$      |      | 2.2  |     | V    |
| Change in magnitude of driver common-mode output voltage for complementary output states  | ΔVoc                     | R=50 $\Omega$ or 27 $\Omega^{(1)}$           |                      |      | 0.01 | 0.2 | V    |
| Input high voltage                                                                        | V <sub>IH1</sub>         | DE, RE, D                                    | I                    | 2.0  |      |     | V    |
| Input low voltage                                                                         | V <sub>IL1</sub>         | DE, RE, D                                    |                      |      |      | 0.8 | V    |
| Input current                                                                             | I <sub>IN1</sub>         | DE、RE、D                                      |                      | -2   |      | 2   | μА   |
|                                                                                           |                          | DE=GND,                                      | Vin=12V              |      |      | 75  | μА   |
| Input current (A, B)                                                                      | I <sub>IN2</sub>         | $V_{DD}$ = GND or 5.25V                      | Vin=-7V              |      |      | -75 | μА   |
|                                                                                           |                          | -7V≤Vouт≤VDD                                 |                      | -250 |      |     | mA   |
| Driver short-circuit current                                                              | I <sub>OD1</sub>         | 0V≤V <sub>OUT</sub> ≤12V                     |                      |      |      | 250 | mA   |
|                                                                                           |                          | 0V≤V <sub>OUT</sub> ≤                        | $V_{DD}$             | ± 25 |      |     | mA   |
| Receiver                                                                                  |                          |                                              |                      | 1    |      |     |      |
| Differential threshold voltage                                                            | V <sub>TH</sub>          | -7V≪V <sub>CM</sub> ≪                        | 12V                  | -100 | -50  | 100 | mV   |
| input hysteresis voltage                                                                  | $\Delta$ V <sub>TH</sub> |                                              |                      |      | 25   |     | mV   |
| output high voltage                                                                       | V <sub>OH</sub>          | I <sub>O</sub> =-4mA,V                       | <sub>ID</sub> =-50mV | 4.5  |      |     | V    |
| output low voltage                                                                        | $V_{OL}$                 | I <sub>O</sub> =4mA, V <sub>ID</sub> =-200mV |                      |      |      | 0.2 | V    |
| 3-state(high impedance) output current at receiver                                        | I <sub>OZR</sub>         | 0.4V≤V <sub>0</sub> ≤2.4V                    |                      |      |      | ±1  | μА   |
| input resistance                                                                          | R <sub>IN</sub>          | -7V≪V <sub>CM</sub> ≪                        | 12V                  | 96   |      |     | kΩ   |
| Receiver short-circuit current                                                            | I <sub>OSR</sub>         | 0V≤V <sub>RO</sub> ≤V                        | 'DD                  | ±7   |      | ±95 | mA   |



# SSP485N

| Supply Current               | Icc    | No load, RE=DI =GND or | DE=V <sub>DD</sub> | 520 | 600 | μА |
|------------------------------|--------|------------------------|--------------------|-----|-----|----|
|                              |        | V <sub>DD</sub>        | DE=GND             | 430 | 600 | μΑ |
| Polarity Discrimination Time | Tdtect |                        |                    | 78  |     | ms |

# **Transmission characteristics**

Unless specified otherwise, VDD=5V±5%, Tamb= 25°C

| Parameter                            | Symbo<br>I         | Test Conditions                                                        | Min. | Тур. | Max. | Unit |
|--------------------------------------|--------------------|------------------------------------------------------------------------|------|------|------|------|
| slew-rate-limited                    |                    |                                                                        |      |      |      |      |
| Driver Input to Output               | t <sub>DPLH</sub>  | $R_{DIFF}=54\Omega$ , $C_{L1}=C_{L2}=100pF^{(2)}$                      | 250  | 720  | 1000 | ns   |
| Driver Input to Output               | t <sub>DPHL</sub>  | $R_{DIFF}=54\Omega$ , $C_{L1}=C_{L2}=100pF^{(2)}$                      | 250  | 720  | 1000 | ns   |
| toplh-tophl                          | t <sub>DSKEW</sub> | $R_{DIFF}$ =54 $\Omega$ , $CL1$ = $CL2$ = $100pF^{(2)}$                |      | -3   | ±100 | ns   |
| Driver Rise or Fall Time             | $t_{DR},t_{DF}$    | $R_{DIFF}$ =54 $\Omega$ ,<br>$C_{L1}$ = $C_{L2}$ =100pF <sup>(2)</sup> | 200  | 530  | 750  | ns   |
| Maximum Data Rate                    | f <sub>MAX</sub>   |                                                                        | 500  |      |      | kbps |
| Driver Enable to Output<br>High      | t <sub>DZH</sub>   | C <sub>L</sub> =100pF, S2 closed <sup>(3)</sup>                        |      |      | 2500 | ns   |
| Driver Enable to Output<br>Low       | t <sub>DZL</sub>   | C <sub>L</sub> =100pF, S1 closed <sup>(3)</sup>                        |      |      | 2500 | ns   |
| Driver Disable Time from Low         | t <sub>DLZ</sub>   | C <sub>L</sub> =15pF, S1 closed <sup>(3)</sup>                         |      |      | 100  | ns   |
| Driver Disable Time from Low         | t <sub>DHZ</sub>   | C <sub>L</sub> =15pF, S2 closed <sup>(3)</sup>                         |      |      | 100  | ns   |
| Receiver Input to Output             | t <sub>RPLH</sub>  | V <sub>ID</sub>  ≥2.0V                                                 |      | 127  | 200  | ns   |
| Receiver Input to Output             | t <sub>RPHL</sub>  | Rise or Fall Time≤15ns <sup>(4)</sup>                                  |      | 127  | 200  | ns   |
| t <sub>RPLH</sub> -t <sub>RPHL</sub> | t <sub>RSKD</sub>  | V <sub>ID</sub>  ≥2.0V<br>Rise or Fall Time≤15ns <sup>(4)</sup>        |      | 3    | ±30  | ns   |
| Receiver Enable to Output Low        | t <sub>RZL</sub>   | C <sub>L</sub> =100pF, S1 closed <sup>(5)</sup>                        |      | 20   | 50   | ns   |
| Receiver Enable to<br>Output High    | t <sub>RZH</sub>   | C <sub>L</sub> =100pF, S2 closed <sup>(5)</sup>                        |      | 20   | 50   | ns   |
| Receiver Disable Time from Low       | t <sub>RLZ</sub>   | C <sub>L</sub> =100pF, S1 closed <sup>(5)</sup>                        |      | 20   | 50   | ns   |
| Receiver Disable Time from High      | t <sub>RHZ</sub>   | C <sub>L</sub> =100pF, S2 closed <sup>(5)</sup>                        |      | 20   | 50   | ns   |



#### Note:

- (1) Test circuit is shown in Figure 1
- (2) Test circuit is shown in Figure 2
- (3) Test circuit is shown in Figure 3
- (4) Test circuit is shown in Figure 4
- (5) Test circuit is shown in Figure 5

### **Test Circuit**

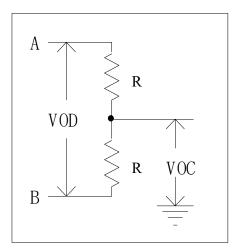



Figure 1 Driver DC Test Circuit

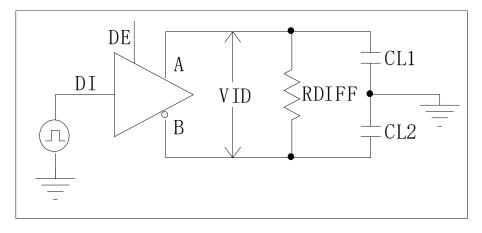



Figure 2 Driver Timing Test Circuit



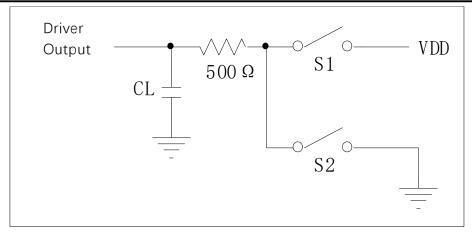



Figure 3 Driver Enable/Invalid Timing Test Circuit

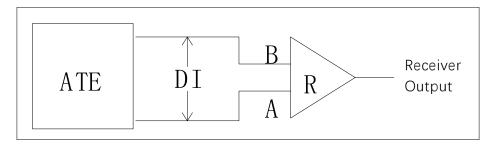



Figure 4 Receiver Propagation Delay Test Circuit

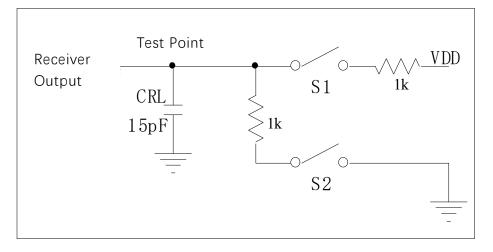



Figure 5 Receiver Enable/Invalid Timing Test Circuit



### **Application Circuits**

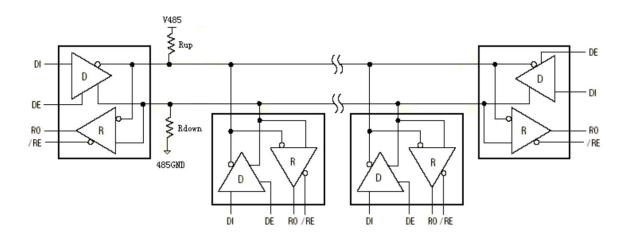
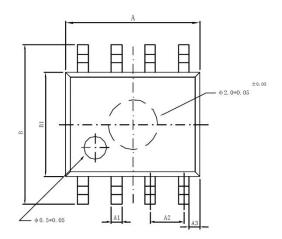


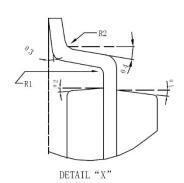

Figure 6 Typical Application Chart

In an RS-485 communication network, an RS-485 transceiver as a host (such as a concentrator) is connected to an RS-485 transceiver as a slave (such as a smart electricity meter) through two buses. In a traditional RS-485 system, the polarity of the two buses needs to be distinguished, and all the RS-485 transceiver bus ports in the system need to match the polarity.


The SSP485N has a built-in polarity judgment circuit. After being powered on, the SSP485N automatically detects the system bus polarity. After 78ms, the SSP485N automatically adjusts the port polarity to match the system bus polarity. Figure 6 shows A typical polarity adaptive network application circuit. In this system, ports A and B of the host need to be connected with appropriate pull-up and pull-down resistors according to the situation, while ports A and B of the slave cannot be connected with pull-up and pull-down resistors, complete the polarity discrimination in the acceptance state.

After the time of polarity discrimination, polarity correction is completed. The state of the bus polarity is locked in the transceiver and held for subsequent data transfer. Data string duration of consecutive "0" or "1" exceeding the polarity determination time may accidentally trigger false polarity correction and should be avoided.

In the SSP485N polarity adaptive bus, it is recommended that the host and slave all adopt polarity adaptive chip for communication, and the mixed use of heteropolarity and polarity adaptive is not recommended.




# Package Information (SOP8)









| Symbol | Min. (mm) | Max.(mm) | Symbol | Min.(mm) | Max.(mm) |  |
|--------|-----------|----------|--------|----------|----------|--|
| Α      | 4.95      | 5.15     | C3     | 0.10     | 0.20     |  |
| A1     | 0.37      | 0.47     | C4     | 0.20     | TYP      |  |
| A2     | 1.277     | ΥP       | D      | 1.05TYP  |          |  |
| А3     | 0.417     | ΥP       | D1     | 0.50TYP  |          |  |
| В      | 5.80      | 6.20     | R1     | 0.07TYP  |          |  |
| B1     | 3.80      | 4.00     | R2     | 0.07TYP  |          |  |
| B2     | 5.0T      | YP       | θ1     | 17°TYP   |          |  |
| С      | 1.30      | 1.50     | θ2     | 13°TYP   |          |  |
| C1     | 0.55      | 0.65     | θ3     | 4°TYP    |          |  |
| C2     | 0.55      | 0.65     | θ4     | 12°TYP   |          |  |



### **Special Instructions**

The company reserves the right of final interpretation of this specification.

### **Version Change Description**

Version: V1.3 Author: Yangyang Time: 2021.8.12

Modify the record:

1. Re-typesetting the manual and checking some data

Version: V1.4 Author: Yangyang Time: 2022.5.12

Modify the record:

1. Add precautions for the use of polarity adaptive

## **Statement**

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co. has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.