

Bi-Direction Relay Driver

SSP8023A

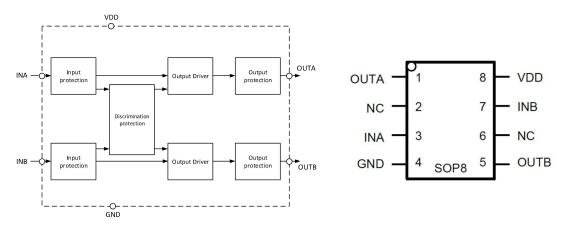
General Description

SSP8023A is a bi-direction relay driver circuit, used to control the DC motor and the magnetic latching relay, with large output capability, ultra-low power consumption. It can be widely used in smart meters and other pulses, level control applications.

Features

- Max input voltage: 40V, recommended safe working voltage: 5~24V
- Pure MOSFET, compared with ordinary BJT triode circuit power consumption is lower. Ouiescent current < 10nA
- The input high low conversion level is about 2.6V, which is compatible with various microcontrollers
- The input INA and INB are equipped with pull-down resistors of about 100K
- Integrated high speed continuation diode with built-in reverse voltage function to cancel TVS tubes in general applications
- The typical drive current is 400mA, and according to the different coil internal resistance of the relay itself (drive current is equal to the power supply voltage divided by the chip itself drive internal resistance and the combination of the relay coil internal resistance, the chip itself drive internal resistance; 12Ω when the power supply voltage is 12V, 11Ω when the power supply voltage is 30V)
- Maximum drive current 800mA (refers to the chip can withstand the value of the relay coil inductor recoil current. The value is dependent on the supply voltage. 800mA refers to the general operating voltage of 12V. In the limit operating voltage of 24V, the driving current should be less than 200mA)

Applications


- Smart Meter
- Motor drive
- Magnetic latching relay control

Order specification

Part No	Package	Manner of Packing	Devices per bag/reel
SSP8023A	SOP8	Reel	4000

Block Diagram and Pin Arrangement Diagram

Pin Assignment

Pin No.	Pin Name	Description
1	OUTA	Output A
2	NC	Not connected.
3	INA	Input A
4	GND	Ground.
5	OUTB	Output B
6	NC	Not connected.
7	INB	Input B
8	VDD	Supply input voltage

Functional Description

SSP8023A is a bi-direction relay driver circuit, used to control the DC motor and the magnetic latching relay. INA and INB are triggered by pulse, so long as the input terminal is directly connected with the output terminal of the corresponding device, it can work; The trigger pulse is triggered according to the function list state and the relay acts accordingly.

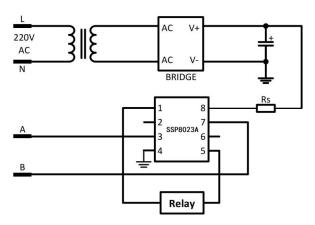
LOGIC FUNCTION TABLE

Input		Output		
INA	INB	OUTA	OUTB	
0	0	High-impedance	High-impedance	
0	1	0	1	
1	0	1	0	
1	1	High-impedance	High-impedance	

Absolute Maximum Ratings

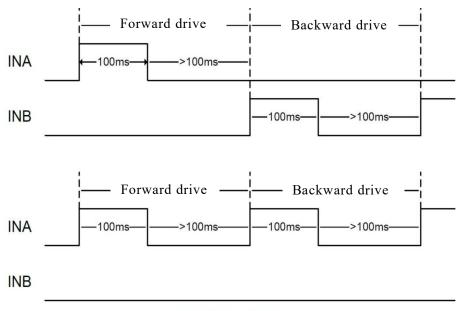
 T_{amb} =25°C,unless specified otherwise.

Parameter	Symbol	Value	Unit
Max Input Voltage	V_{DD} - V_{GND}	+40	V
OUTA/OUTB Voltage	V _{OUTA} /V _{OUTB}	+40	V
Other Input / Output Voltage	$V_{\rm IN}/V_{\rm OUT}$	VGND-0.4~VDD+0.4	V
Max Junction Temperature	T _j	150	°C
Storage Temperature	$T_{\rm stg}$	-65~150	°C
Thermal Resistance (Junction to Ambient)	R_{ja}	120	°C/W
ESD (Human-Body Model)	НВМ	8000	V
ESD (Machine Model)	MM	200	V


Electrical Characteristics^{(1) (2)}

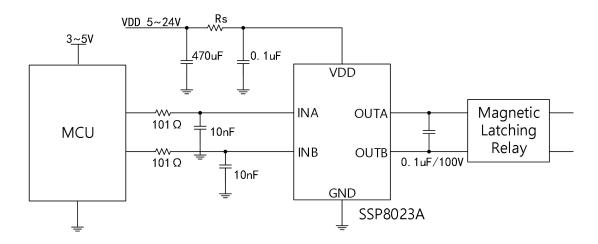
 T_{amb} =25°C,unless specified otherwise.

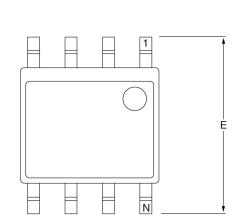
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Shutdown Characteristics						
Output Breakdown Current	BV _{DSS}	$V_{INA}=V_{INB}=0V,$ $I_D=250uA$	40			V
Output Leakage Current	I_{DSS}	$V_{INA}=V_{INB}=0V, V_D=24V$			1	μΑ
Static Opening Characterist	ics					
Input Threshold Voltage	VTH			2.6		V
		$V_{DD}=12V, R_L=80\Omega$		12	15	Ω
O-tt Oi-t	D	V_{DD} =30V, R_L =80 Ω		11	14	Ω
Output On-resistance	R _{DS(ON)}	V_{DD} =12V, R_L =40 Ω		12	15	Ω
		V_{DD} =30V, R_L =40 Ω		11	14	Ω
Parasitic Characteristics						
Equivalent Input Resistor	R_{IN}			100		kΩ
Equivalent Input	C_{IN}				5	"E
Capacitance	CIN				3	pF
FWD Characteristics						
Long Time Forward	Τ				1	
Conduction Current	I_{S}				1	A
Forward Conduction Voltage	V_{SD}	$I_S=1A$		0.86	1.3	V
Reverse Recovery Time	T_{RR}	$V_{DD}=12V, R_L=80\Omega$		190		ns
Transmission Characteristic	S					
Rise Time	T_R	$V_{DD}=12V$, $R_L=80\Omega$		75		ns
Turn ON Delay Time	T _{D(ON)}	V_{DD} =12V, R_L =80 Ω		210		ns
Fall Time	T_{F}	$V_{DD}=12V, R_L=80\Omega$		35		ns
Turn OFF Delay Time	T _{D(OFF)}	$V_{DD}=12V$, $R_L=80\Omega$		190		ns

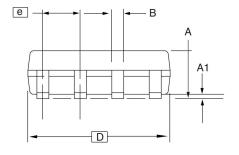


Application Circuits

Typical Application Diagram


The input terminals A and B are triggered by pulse. The input terminal of the chip is connected with the output terminal of the corresponding device to work. The trigger pulse is triggered according to the function list state and the relay acts accordingly. In smart meter applications, the recommended pulse width=100ms. The length of the intervals should be longer than 100ms. These intervals include: intervals between forward drive pulse and next backward drive pulse, intervals between forward drive pulse, intervals between backward drive pulse and next forward drive pulse, intervals between backward drive pulse and next forward drive pulse, intervals between backward drive pulse and next backward drive pulse.


Schematic diagram of pulse excitation


Recommended circuit

Package Information (SOP8)

Top View

Side View

E1 L

End View

COMMON DIMENSIONS (Unit of Measure = mm)

(Offic of Measure = IIIII)					
SYMBOL	MIN	NOM	MAX	NOTE	
Α	1.35	-	1.75		
A1	0.10	-	0.25		
b	0.31	-	0.51		
С	0.17	-	0.25		
D	4.80	-	5.00		
E1	3.81	-	3.99		
Е	5.79	-	6.20		
е	1.27 BSC				
L	0.40	-	1.27		
Ø	0°	_	8°		

Special Instructions

The company reserves the right of final interpretation of this specification.

Version Change Description

Version: V1.3	Author: Yang	Time: 2021.8.19
Modify the record:		
1. Re-typesetting the manual and	d checking some data	
Version: V1.4	Author: Yang	Time: 2021.12.22
Modify the record:		
1. Add the recommended circuit		
Version: V1.5	Author: Yang	Time: 2022.5.23
Modify the record:		
1. Update Order specification		

Statement

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co. has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.