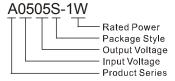
MORNSUN®


A S-1W & B LS-1W Series

1W, FIXED INPUT, ISOLATED & UNREGULATED **DUAL/SINGLE OUTPUT DC-DC CONVERTER**

PART NUMBER SYSTEM

FEATURES

- Efficiency up to 80%
- Small Size
- 1KVDC Isolation
- Operating Temperature Range: -40°C ~ +85°C
- No External Component Required
- Industry Standard Pinout

APPLICATIONS

The A_S-1W & B_LS-1W Series are designed for application where isolated output is required from a distributed power system.

These products apply to where:

- 1) Input voltage variation ≤ ±10%;
- 2) 1KVDC input and output isolation;
- 3) Regulated and low ripple noise is not required.

Such as: digital circuits, low frequency analog circuits, and IGBT power device driving circuits.

SELECTION (SUIDE									
Model Number	Input Voltage(VDC)	Output Voltage		Current (A)	(mA)	Current (typ.)	Reflected Ripple	Max. Capacitive	Efficiency (%, typ.)	Approval
Model Number	Nominal (Range)	(VDC)	Max.	Min.	@Max. Load	@No Load	Current (mA,typ.)	Load# (µF)	@Max. Load	Approvai
A0505S-1W		±5	±100	±10	273			100	72	UL
A0509S-1W		±9	±56	±6	268	33	20		77	UL
A0512S-1W	5	±12	±42	±5	253	33	20		79	UL
A0515S-1W	(4.5-5.5)	±15	±33	±4	229				80	UL
B0505LS-1W		5	200	20	273		04	220	70	UL CE
B0512LS-1W		12	83	9	250	35	21	220	78	UL CE
A1212S-1W	12 (10.8-13.2)	±12	±42	±5	105	17	15	100	79	UL
B1205LS-1W		5	200	20	116	14	22	220	71	UL CE
A2412S-1W	24 (21.6-26.4)	±12	±42	±5	52	8	43	100	80	UL

Note: 1.# For each output.
2.The A_S-W25/B_LS-W25 series also are available in our company.

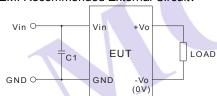
INPUT SPECIFICATIONS									
Item	Test Conditions	Min.	Тур.	Max.	Unit				
Input Surge Voltage (1 sec. max.)	5VDC input	-0.7		9	VDC				
	12VDC input	-0.7		18					
	24VDC input	-0.7		30					
Input Filter		Capacitance Filter							

OUTPUT SPECIFICATIONS								
Item	Test Conditions		Min.	Тур.	Max.	Unit		
Output Power			0.1		1	W		
Output Voltage Accuracy				See tolerance envelope curve				
Output Voltage Balance	Dual Output, Balance	ed Loads		±0.5	±1	%		
Line Regulation	For Vin change of ±1	%			±1.2			
		5VDC output		10.5	15	%		
Load Dogulation	10% to 100% load	9VDC output		8.3	15			
Load Regulation	10% to 100% load	12VDC output		6.8	15			
		15VDC output		6.3	15			
Temperature Drift	100% full load	100% full load			±0.03	%/°C		

Ripple & Noise*	20MHz Bandwidth	AXXXXS-1W	 50	75	m)/n n
	ZUMITZ Baridwidti	BXXXXLS-1W	 75	100	mVp-p
Short Circuit Protection**			 	1	s

Note: 1.Dual output models unbalanced load: ±5%.

2.*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes. 3.**Supply voltage must be discontinued at the end of short circuit duration.


COMMON SPECIFICATIONS								
Item	Test Conditions	Min.	Тур.	Max.	Unit			
Isolation Voltage	Tested for 1 minute and leakage current less than 1 mA	1000			VDC			
Isolation Resistance	Test at 500VDC	1000			ΜΩ			
Isolation Capacitance	Input/Output,100KHz/0.1V		30		pF			
Switching Frequency	Full load, nominal input		100		KHz			
MTBF	MIL-HDBK-217F@25℃	3500			K hours			
Case Material		Plastic(UL94-V0)						
Weight			2.1		g			

ENVIRONMENTAL SPECIFICATIONS									
Item	Test Conditions	Min.	Тур.	Max.	Unit				
Storage Humidity	Non condensing			95	%				
Operating Temperature	Power derating (above 85℃)	-40	-	85					
Storage Temperature		-55	-	125	°c				
Temp. rise at full load		-	25)					
Lead Temperature	1.5mm from case for 10 seconds			300					
Cooling			Free air convection						

EMC SPECIFICATIONS								
EMI	CE		CISPR22/EN55022	CLASS A (Externa	al Circuit Refer to Figure1)			
EMS	TCD.	AxxxxS-1W Series	IEC/EN61000-4-2	Contact ±6KV	perf. Criteria B			
	ESD	BxxxxLS-1W Series	IEC/EN61000-4-2	Contact ±8KV	perf. Criteria B			

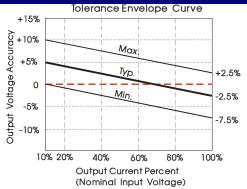
EMC RECOMMENDED CIRCUIT

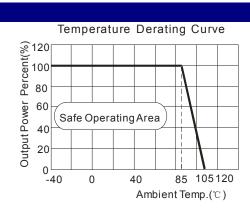
EMI Recommended External Circuit:

(Figure 1)

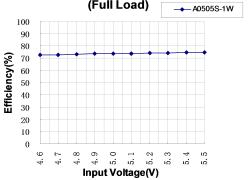
A S-1W Series

Recommended external circuit parameters:

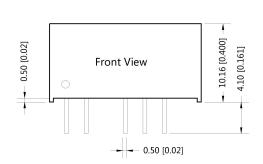

Vin: 5V/12V C1: 4.7µF/50V Vin: 24V C1: 1µF/50V

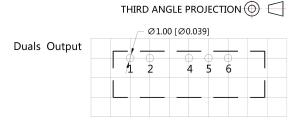

B LS-1W Series

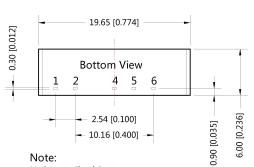
Recommended external circuit parameters:

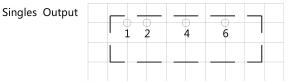

Vin: 5V/12V C1: 1µF/50V

PRODUCT TYPICAL CURVE



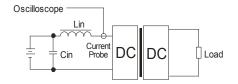

Efficiency VS Input Voltage curve (Full Load) 90




Efficiency VS Output Load curve (Vin=Vin-nominal) → A0505S-1W 100 90 80 Efficiency(%) 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 **Total Output Current (%)**

OUTLINE DIMENSIONS, RECOMMENDED FOOTPRINT & PACKAGING

Note: Grid 2.54*2.54mm


Unit:mm[inch] Pin section tolerances :±0.10[±0.004] General tolerances: ±0.25[±0.010]

Pin-Out Singles Pin Duals 1 Vin Vin 2 **GND GND** 4 0٧ -Vo 5 No Pin 0V 6 +Vo +Vo

TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

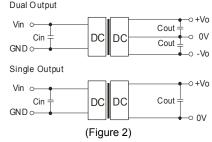
Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.

Lin(4.7µH) $Cin(220\mu F, ESR < 1.0\Omega at 100 KHz)$

DESIGN CONSIDERATIONS

1) Requirement on output load

In order to ensure the converter can work reliably with high efficiency, the minimum load should not less than 10% rated load when it is used. If the needed power is indeed small, please parallel a resistor on t the output side (The sum of the efficient power and resistor consumption power is not less than 10%), or use our company's products with a lower rated output power (A_S -W25/B_LS-W25 series).

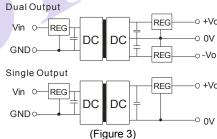

2) Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is add a circuit breaker to the circuit.

3) Recommended circuit

If you want to further decrease the input/output ripple, an capacitor filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 2).

It should also be noted that the capacitance of filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor sees (Table 1).


EXTERNAL CAPACITOR TABLE (TABLE 1)

Vin	Cin	Single	Cout	Dual	Cout#
(VDC)	(µF)	Vout	(µF)	Vout	(µF)
		(VDC)		(VDC)	
5	4.7	5	10	±5	4.7
12	2.2			±9	2.2
24	1	12	2.2	±12	1
-	-			±15	0.47

Note: # For each output.

4) Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear regulator and an capacitor filtering network with overheat protection that is connected to the input or output end in series (Figure 3), the recommended capacitance of its filter capacitor sees (Table 1), linear regulator based on the actual voltage and current to reasonable selection.

5) Cannot use in parallel and hot swap

Note:

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed.
- 2. Max. Capacitive Load tested at input voltage range and full load.
- 3. All date in the datasheet are measured according to nominal input voltage, rated output load, TA=25°C, humidity<75%, unless otherwise specified.
- 4. In this datasheet, all the test methods of indications are based on our corporate standards.
- 5. The performance in the datasheet is just fit for the part number in the selection guide, and may be different from the customer-designed product, you can get more details from MORNSUN FAE.
- 6. Contact us for your specific requirement.
- 7. Specifications subject to change without prior notice.

MORNSUN Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R.China.

Tel: 86-20-38601850

Fax:86-20-38601272

Http://www.mornsun-power.com