SB220 THRU SB2100

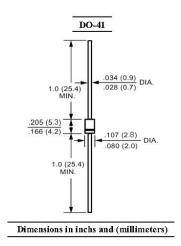
Schottky Barrier Rectifier Reverse Voltage - 20 to 100 V

Forward Current - 2 A

Features

- · High current capability
- · High surge current capability
- Low forward voltage drop
- For use in low voltage high frequency inverters, free wheeling, and polarity protection applications

Mechanical Data


• Case: Molded plastic, DO-41

• Epoxy: UL 94V-0 rate flame retardant

• Lead: Axial leads, solderable per MIL-STD-202, method 208

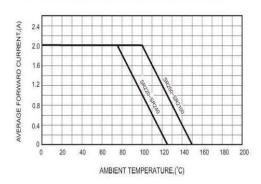
• Polarity: Color band denotes cathode end

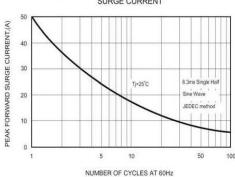
• Mounting Position: Any

Absolute Maximum Ratings and Characteristics

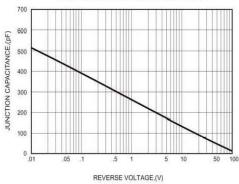
Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, resistive or inductive load. For capacitive load, derate by 20%.

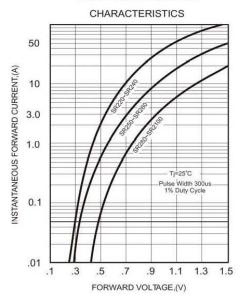
Parameter	Symbols	SB220	SB230	SB240	SB250	SB260	SB280	SB2100	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	20	30	40	50	60	80	100	V
Maximum RMS Voltage	V _{RMS}	14	21	28	35	42	56	70	V
Maximum DC Blocking Voltage	V_{DC}	20	30	40	50	60	80	100	V
Maximum Average Forward Rectified Current 0.375" (9.5 mm) Lead Length	I _{F(AV)}	2							Α
Peak Forward Surge Current 8.3 ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	50							А
Maximum Forward Voltage at 2 A	V _F	0.55			0.7		0.	85	V
Maximum Reverse Current $T_A = 25$ °C at Rated DC Blocking Voltage $T_A = 100$ °C	I _R	0.5 20						mA	
Typical Junction Capacitance 1)	CJ	170							pF
Typical Thermal Resistance 2)	$R_{\theta JA}$	35							°C/W
Operating and Storage Temperature Range	T_j , T_stg	- 50 to + 125							°C


¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC


Dated: 05/02/2010 H Rev: 01

²⁾ Thermal resistance junction to ambient and from junction to lead at 0.375" (9.5 mm) lead length. P.C.B mounted


FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE


FIG.3-MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

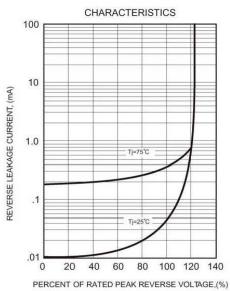

FIG.4-TYPICAL JUNCTION CAPACITANCE

FIG.2-TYPICAL FORWARD

FIG.5 - TYPICAL REVERSE

