

Transient Voltage Suppressor

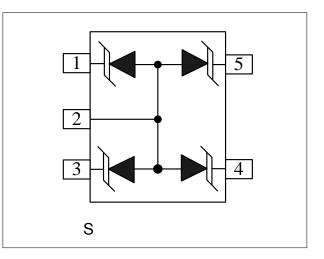
Features

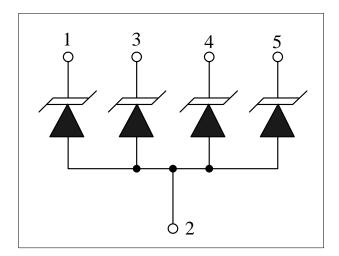
- Solid-state silicon-avalanche technology
- 30 Watts Peak Pulse Power per Line (t_p=8/20µs)
- Low operating and clamping voltages
- Up to Four (4) Lines of Protection
- Working Voltages: 5 V
- Low Leakage Current

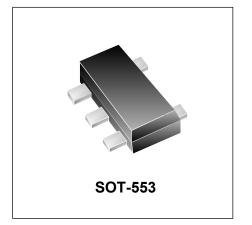
IEC COMPATIBILITY (EN61000-4)

- IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- IEC 61000-4-4 (EFT) 40A (5/50ns)

Mechanical Characteristics

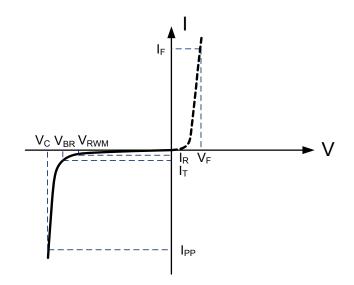

- SOT-553 package
- Molding compound flammability rating: UL 94V-0
- Marking: Marking Code
- Packaging: Tape and Reel
- RoHS/WEEE Compliant


Circuit Diagram


Applications

- Cellular Handsets & Accessories
- Personal Digital Assistants (PDAs)
- Notebooks & Handhelds
- Portable Instrumentation
- Digital Cameras
- MP3 Player

Schematic & PIN Configuration



Absolute Maximum Rating						
Rating	Symbol	Value	Units			
Peak Pulse Power ($t_p = 8/20 \mu s$)	P _{PP}	30	Watts			
Peak Forward Voltage ($I_{\rm F}$ =1A, $t_{\rm p}$ =8/20 μs)	V _{FP}	1.5	V			
Operating Temperature	TJ	-55 to + 125	Ĉ			
Storage Temperature	T _{STG}	-55 to +150	Ċ			

Electrical Parameters (T=25°C)

Symbol	Parameter	
I PP	Maximum Reverse Peak Pulse Current	
Vc	Clamping Voltage @ IPP	
VRWM	Working Peak Reverse Voltage	
IR	Maximum Reverse Leakage Current @ VRWM	
VBR	Breakdown Voltage @ I⊤	
Іт	Test Current	
lF	Forward Current	
VF	Forward Voltage @ I⊧	

Electrical Characteristics

WE03MF							
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	
Reverse Stand-Off Voltage	V _{RWM}				3.3	V	
Reverse Breakdown Voltage	V_{BR}	I _T =1mA	4.0			V	
Reverse Leakage Current	I _R	V _{RWM} =5V, T=25℃			1	μA	
Peak Pulse Current	I _{PP}	t _p =8/20µs			3	А	
Clamping Voltage	Vc	I _{PP} =3A, t _p =8/20μs		9	12	V	
Junction Capacitance	Cj	Between I/O pins and Ground V _R = 0V, f = 1MHz		8		pF	

Typical Characteristics

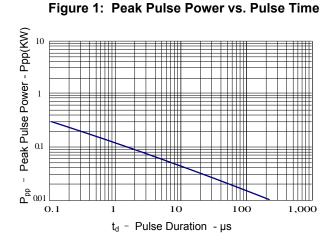


Figure 3: WE05MF Insertion Loss

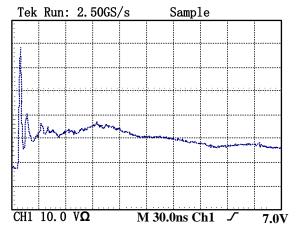



Figure 5: ESD Clamping(8kV Contact per IEC 61000-4-2)

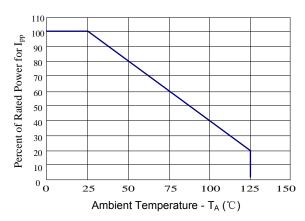
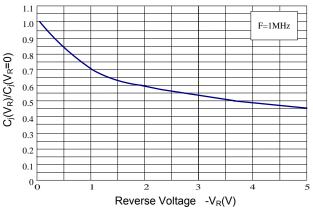
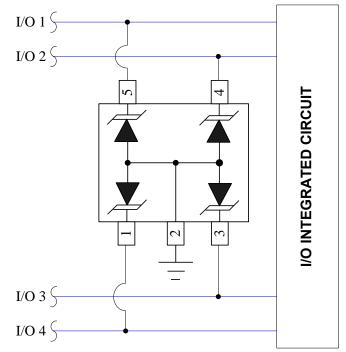



Figure 4: Normalized Junction Capacitance vs. Reverse Voltage

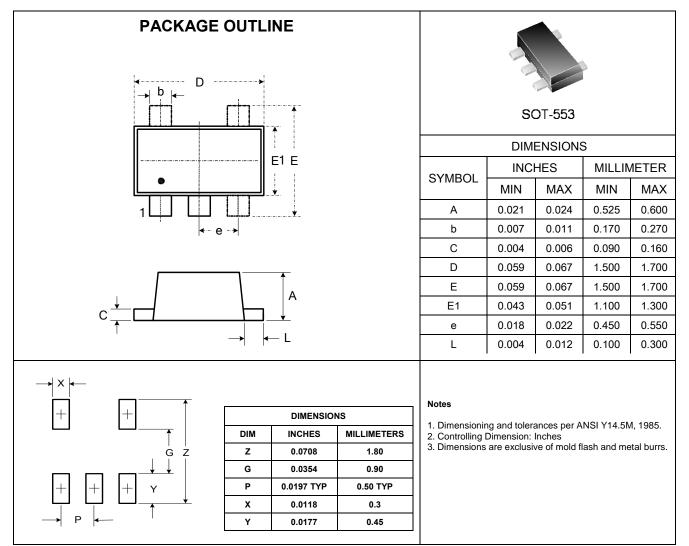

Application Information

The WE03MF are TVS arrays designed to protect I/O or data lines from the damaging effects of ESD or EFT. This product provides unidirectional protection; the device is connected as follows:

UNIDIRECTIONAL COMMON-MODE CONFIGURATION

The WE03MF provides up to four (4) lines of protection in a common-mode configuration as depicted in Figure 1. Circuit connectivity is as follows:

- I/O 1 is connected to Pin 5.
- I/O 2 is connected to Pin 4.
- I/O 3 is connected to Pin 3.
- I/O 4 is connected to Pin 1.
- Pin 2 is connected to ground.



CIRCUIT BOARD LAYOUT RECOMMENDATIONS

Circuit board layout is critical for Electromagnetic Compatibility (EMC) protection. The following guidelines are recommended:

- The protection device should be placed near the input terminals or connectors, the device will divert the transient current immediately before it can be coupled into the nearby traces.
- The path length between the TVS device and the protected line should be minimized.
- All conductive loops including power and ground loops should be minimized.
- The transient current return path to ground should be kept as short as possible to reduce parasitic inductance.
- Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.

Outline Drawing - SOT-553

Marking Codes

Part Number	WE03MF
Marking Code	E3F