

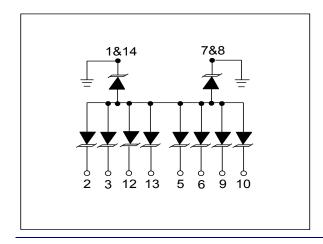
WS05-8MDAC through WS24-8MDAC

Transient Voltage Suppressor

Document: W0301083, Rev: A

Features

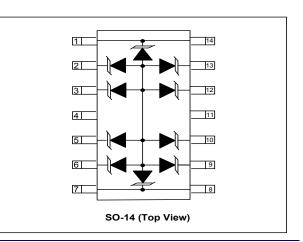
- Transient protection for data lines
- Small SO-14 surface mount package
- Protects eight I/O lines
- Working voltages: 5V, 12V, 15V and 24V
- Low leakage current
- Low operating and clamping voltages
- Solid-state silicon avalanche technology

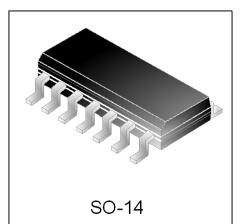

IEC COMPATIBILITY (EN61000-4)

- IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- IEC 61000-4-4 (EFT) 40A (5/50ns)
- IEC 61000-4-5 (Lightning) 12A (8/20µs)

Mechanical Characteristics

- JEDEC SO-14 package
- Molding compound flammability rating: UL 94V-0
- Marking: Part number, date code, logo
- Packaging: Tube or Tape and Reel per EIA 481
- RoHS/WEEE Compliant

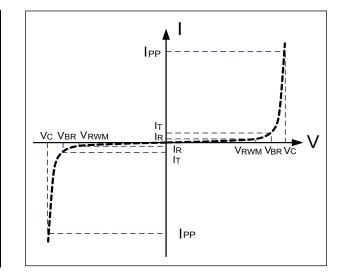

Circuit Diagram (Each Line Pair)



Applications

- RS-232 and RS-422 Data Lines
- Microprocessor based equipment
- LAN/WAN equipment
- Notebook ,Desktops, and Servers
- Instrumentation
- Peripherals
- Serial and Parallel Ports

Schematic & PIN Configuration


[™] Silicontrol[™] Overvoltage Protection Products

WSxx-8MDAC

Absolute Maximum Rating									
Rating	Symbol	Value	Units						
Peak Pulse Power ($t_p = 8/20 \mu s$)	P _{PK}	300	Watts						
Lead Soldering Temperature	TL	260 (10 sec.)	°C						
Operating Temperature	TJ	-55 to + 125	°C						
Storage Temperature	T _{STG}	-55 to +150	°C						

Electrical Parameters (T=25°C)

Symbol	Parameter
Ірр	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @ IPP
VRWM	Working Peak Reverse Voltage
IR	Maximum Reverse Leakage Current @ VRWM
VBR	Breakdown Voltage @ I⊤
Iτ	Test Current
lF	Forward Current
VF	Forward Voltage @ I⊧

Electrical Characteristics

WS05-8MDAC								
Parameter	Symbol	Conditions	Min	Typical	Мах	Units		
Reverse Stand-Off Voltage	V _{RWM}				5.0	V		
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	6.0			V		
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			20	μA		
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20μs			9.8	V		
Maximum PeakPulse Current	I _{PP}	t _p =8/20μs			17	А		
Junction Capacitance	Cj	V _R = 0V, f = 1MHz			350	pF		

WS12-8MDAC								
Parameter	Symbol	Conditions	Min	Typical	Мах	Units		
Reverse Stand-Off Voltage	V _{RWM}				12	V		
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	13.3			V		
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			1	μA		
Clamping Voltage	Vc	I _{PP} =1Α, t _p =8/20μs			19	V		
Maximum PeakPulse Current	I _{PP}	t _p =8/20µs			12	А		
Junction Capacitance	Cj	V _R = 0V, f = 1MHz			120	pF		

Electrical Characteristics (Continued)

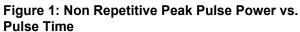
WS15-8MDAC								
Parameter	Symbol	Conditions	Min	Typical	Мах	Units		
Reverse Stand-Off Voltage	V _{RWM}				15	V		
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	16.7			V		
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			1	μA		
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20μs			24	V		
Maximum Peak Pulse Current	I _{PP}	t _p =8/20μs			10	А		
Junction Capacitance	Cj	V_R = 0V, f = 1MHz			75	pF		

WS24-8MDAC									
Parameter	Symbol	Conditions	Min	Typical	Мах	Units			
Reverse Stand-Off Voltage	V _{RWM}				24	V			
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	26.7			V			
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			1	μΑ			
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20μs			43	V			
Maximum PeakPulse Current	I _{PP}	t _p =8/20μs			5	А			
Junction Capacitance	Cj	V _R = 0V, f = 1MHz			50	pF			

WSxx-8MDAC

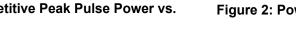
Typical Characteristics

10


1

0.1

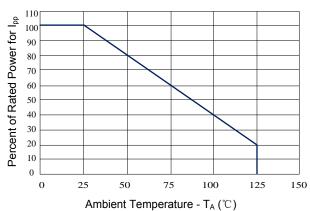
0.01


0.1

Peak Pulse Power - Ppk (KW)

Pulse Duration - tp (µs)

10


1,000

300W 8/20µs

Waveform

ř ||

100

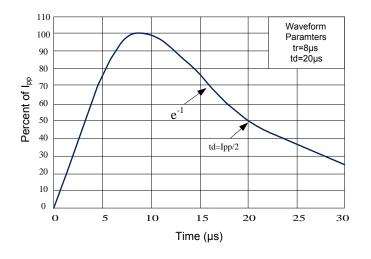
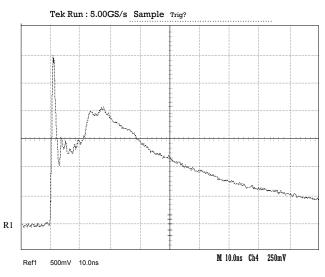



Figure 2: Power Derating Curve


Figure 3: Pulse Waveform

Π

1

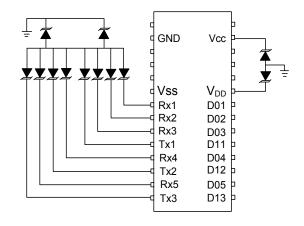
Figure 5: ESD Discharge Parameters Per IEC 61000-4-2

Level	First Peak Current (A)	Peak Current at 30ns (A)	Peak Current at 60ns (A)	Test Voltage (Contact Discharge) (kV)	Test Voltage (Air Discharge) (kV)
1	7.5	4	8	2	2
2	15	8	4	4	4
3	22.5	12	6	6	8
4	30	16	8	8	15

∐ Silicontrol[™] Overvoltage Protection Products

WSxx-8MDAC

Applications Information


Device Connection for Protection of Eight Data Lines

The WSxx-8MDAC is designed to protect up to 8 data or I/O lines. They are bidirectional devices and may be used on lines where the signal polarities are above and below ground.

The WSxx-8MDAC TVS arrays employ a monolithic structure. Therefore, the working voltage (V_{RWM}) and breakdown voltage (V_{BR}) specifications apply to the differential voltage between any two data line pins. For example, the WS 24C-8MDA is designed for a maximum voltage excursion of ±12V between any two data lines.

The device is connected as follows:

Pins 2, 3, 5, 6, 9, 10, 12 and 13 are connected to the lines that are to be protected. Pins 1, 7, 8, and 14 are connected to ground. The ground connections should be made directly to the ground plane for best results. The path length is kept as short as possible to reduce the effects of parasitic inductance in the board traces. Pins 4 and 11 are not connected.

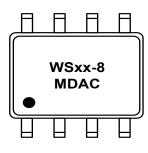
Connection Diagram

Circuit Board Layout Recommendations for Suppression of ESD

Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended:

- Place the TVS near the input terminals or connectors to restrict transient coupling.
- Minimize the path length between the TVS and the protected line.
- Minimize all conductive loops including power and ground loops.
- The ESD transient return path to ground should be kept as short as possible.
- Never run critical signals near board edges.
- Use ground planes whenever possible.

Matte Tin Lead Finish


Matte tin has become the industry standard lead-free replacement for SnPb lead finishes. A matte tin finish is composed of 100% tin solder with large grains. Since the solder volume on the leads is small compared to the solder paste volume that is placed on the land pattern of the PCB, the reflow profile will be determined by the requirements of the solder paste. Therefore, these devices are compatible with both lead-free and SnPb assembly techniques. In addition, unlike other lead-free compositions, matte tin does not have any added alloys that can cause degradation of the solder joint.

Outline Drawing – SO-14

	SO-14										
▼	Ē	SIDE VIEW	SEE DETAIL A	DIMENSIONS							
│				DIM		INCHES	6	М	MILLIMETERS		
	. ¥	→ h	T	DIM	MIN	NOM	MAX	MIN	NOM	MAX	
2X N/2 TIPS IF B			<u>▼</u> h	А	.053	-	.069	1.35	-	1.75	
				A1	.004	-	.010	0.10	-	0.25	
	GA PLA	<u>GE</u> ¥	C \	A2	.049	-	.065	1.25	-	1.65	
		2		b	.012	-	.020	0.31	-	0.51	
	▲	<u></u>	(L1) ► θ1	с	.007	-	.010	0.17	-	0.25	
	5	DETAI	LA	D	.337	.341	.344	8.55	8.65	8.75	
	,			E1	.150	.154	.157	3.80	3.90	4.00	
				E		.236BS0	2		6.00BSC)	
NOTES:				е		.050 BS		-	1.27 BS0	2	
1. Controlling Dimensions Are In Millimete	re (Anglee	In Degrees)		h	.010	-	.020	0.25	-	0.50	
-		-		L	.016	.028	.041	0.40	0.72	1.04	
2. Datums - A- And - B- To Be Determined	d At Datum	Plane -H		θ1	0°	-	8°	0°	-	8°	
3. Dimensions "E1" And "D" Do Not Includ	e Mold Fla	sh, Protrusions	Or Gate Burrs.	L1				(1.04)	,		
				N	8 8			-			
4. Reference JEDEC STD MS-012, VARIT	ION AB.			aaa				0.10			
				bbb .010 0.25							
						.008			0.20		
X→→ ◄	DIMENSIONS				5						
	DIM	INCHES	MILLIMETERS	RS 1. This Land Pattern Is For Reference Pu						Consult	
	C	(.205)	(5.20)			•	Group To E		ır Company	's	
(C) + G Z	G	.118	3.00	N	Aanufactu	ring Guide	lines Are M	et.			
		+									

Marking Codes

1.27

0.60

2.20

7.40

.050

.024

.087

.291

Ρ

Х

Y

z

XX=Reverse Stand-Off Voltage

