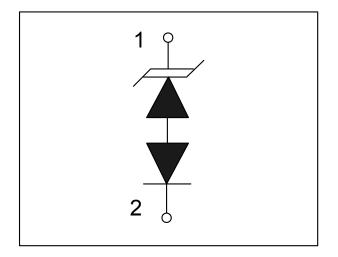


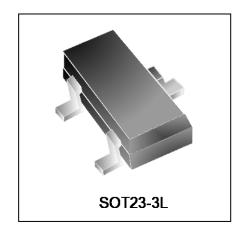
WS2.8LUC through WS12LUC

Transient Voltage Suppressor

Features

- 500 watts peak pulse power (t_p = 8/20µs)
- Small package for use in portable electronics
- Two devices will protect one line
- Ultra Low capacitance for high-speed data lines
- Working Voltages: 2.8V, 5V and 12V
- Solid-state silicon avalanche technology

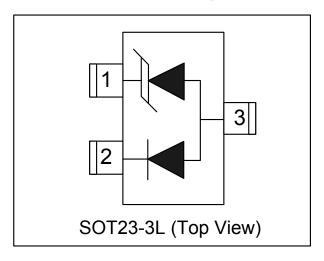

IEC COMPATIBILITY (EN61000-4)


- IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- IEC 61000-4-4 (EFT) 40A (5/50ns)
- IEC 61000-4-5 (Lightning) 20A (8/20μs)

Mechanical Characteristics

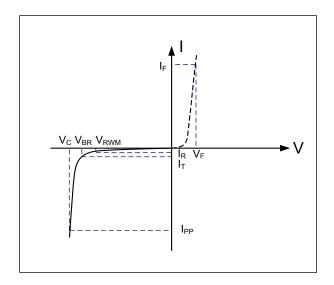
- JEDEC SOT23-3L package
- Molding compound flammability rating:
 UL 94V-0
- Marking : Marking Code
- Packaging : Tape and Reel per EIA 481
- RoHS/WEEE Compliant

Circuit Diagram



Applications

- High-speed data lines
- Cellular Handsets And Accessories
- Universal Serial Bus (USB) port protection
- Portable Electronics
- LAN/WAN equipment
- Desktop PC and Peripherals


Schematic & PIN Configuration

Absolute Maximum Rating					
Rating	Symbol	Value	Units		
Peak Pulse Power (t _p =8/20μs)	P _{PP}	500	Watts		
Lead Soldering Temperature	TL	260(10sec)	c		
Operating Temperature	TJ	-55 to + 125	c		
Storage Temperature	T _{STG}	-55 to +150	c		

Electrical Parameters (T=25°C)

Symbol	Parameter
I PP	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @ IPP
VRWM	Working Peak Reverse Voltage
lR	Maximum Reverse Leakage Current @ Vким
V _{BR}	Breakdown Voltage @ I⊤
lτ	Test Current
lf	Forward Current
VF	Forward Voltage @ I _F

Electrical Characteristics

WS2.8LUC						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				2.8	V
Reverse Breakdown Voltage	V_{BR}	I _T =1mA	3			V
Reverse Leakage Current	I _R	V _{RWM} =5V, T=25℃			1	μΑ
Peak Pulse Current	I _{PP}	t _p =8/20µs			20	Α
Clamping Voltage	Vc	I _{PP} =2A, tp=8/20μs			3.9	V
Maximum Clamping Voltage	V _C	I _{PP} =20A, tp=8/20μs			23	V
Junction Capacitance	C _j	Pin 1 to 2 V _R = 0V, f = 1MHz		1		pF

Electrical Characteristics (Continued)

WS05LUC						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V_{RWM}				5	V
Reverse Breakdown Voltage	V_{BR}	I _T =1mA	6			V
Reverse Leakage Current	I _R	V _{RWM} =12V, T=25℃			1	μA
Peak Pulse Current	I _{PP}	t₀ =8/20µs			20	Α
Clamping Voltage	Vc	I _{PP} =1A, tp=8/20μs			9.8	V
Maximum Clamping Voltage	V _C	I _{PP} =20A, tp=8/20μs			28.8	V
Junction Capacitance	C _j	Pin 1 to 2 V _R = 0V, f = 1MHz		0.5		pF

WS12LUC						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				12	V
Reverse Breakdown Voltage	V_{BR}	I _T =1mA	13.3			V
Reverse Leakage Current	I _R	V _{RWM} =15V, T=25℃			1	μΑ
Peak Pulse Current	I _{PP}	t _p =8/20μs			10	Α
Clamping Voltage	V _C	I _{PP} =1A, tp=8/20μs			19	V
Maximum Clamping Voltage	Vc	I _{PP} =10A, tp=8/20μs			32	٧
Junction Capacitance	C _j	Pin 1 to 2 V _R = 0V, f = 1MHz		0.5		pF

Typical Characteristics

Figure 1: Peak Pulse Power Vs Pulse Time

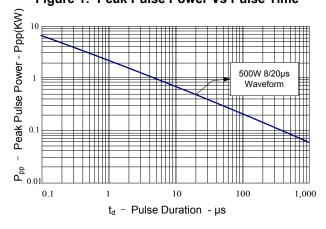


Figure 2: Power Derating Curve

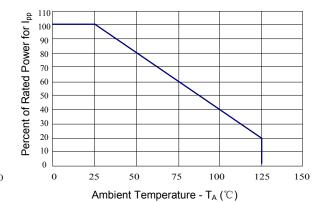


Figure 3: Clamping Voltage vs. Peak Pulse Current

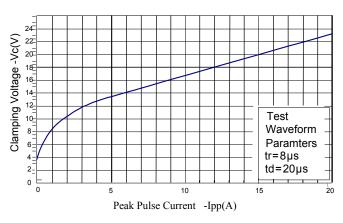


Figure 4: IEC 61000-4-2 Discharge Parameters

Level	First Peak Current (A)	Peak Current at 30 ns (A)	Peak Current at 60 ns (A)	Test Voltage (Contact Discharge) (kV)	Test Voltage (Air Discharge) (kV)
1	7.5	4	2	2	2
2	15	8	4	4	4
3	22.5	12	6	6	8
4	30	16	8	8	15

Figure 5: Pulse Waveform

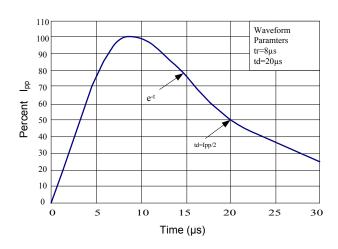
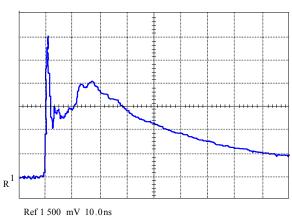
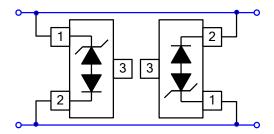
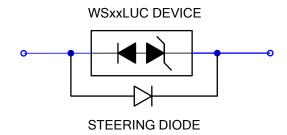



Figure 6: ESD Clamping(8kV Contact per IEC 61000-4-2)

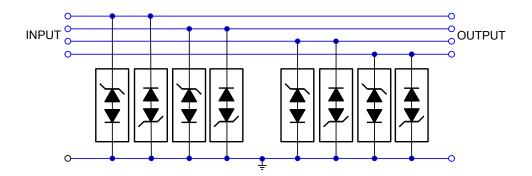



Application Information

The WSxxLUC series devices are designed to protect high speed data lines. The WSxxLUC utilizes a low capacitance compensation diode in series with, but in opposite polarity to a TVS diode in each line to achieve an effective capacitance of less than 1.0pF per device. During a transient event, the internal rectifier must be forward biased (TVS is reversed biased). Therefore, each device will only suppress transient events in one polarity. To achieve protection in both positive and negative polarity, a second device is connected in anti-parallel to the first. On unidirectional lines, a fast switching steering diode may be used as an alternative to using two WSxxLUC devices.

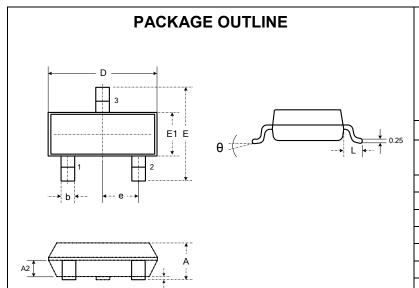
Protection of one unidirectional or bidirectional high-speed line is achieved by connecting two devices in anti-parallel. Pin 1 of the first device is connected to the line and pin 2 is connected to ground (or to a second line for differential protection). Pin 2 of the second device is connected to line 1 and pin 1 is connected to ground (or line 2) as shown. Pin 3 is not connected.

An alternative solution to protect unidirectional lines, is to connect a fast switching steering diode in parallel with the WSxxLUC series device. When the steering diode is forward-biased, the TVS will avalanche and conduct in reverse direction. It is important to note that by adding a steering diode, the effective capacitance in the circuit will be increased, therefore the impact of adding a steering diode must be taken in consideration to establish whether the incremental capacitance will affect the circuit functionality or not.

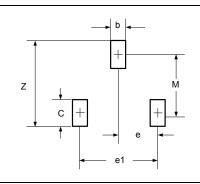


Two Devices: Bidirectional or Unidirectional Line

One Device: Unidirectional Line


Another typical application, in which the WSxxLUC series device can be utilized, is to protect multiple I/O lines. The protection in each of the I/O lines is achieved by connecting two devices inverse-parallel

I/O Line Protection



Outline Drawing - SOT23-3L

DIMENSIONS						
SYMBO	MILLIMETER		INCHES			
L	MIN	MAX	MIN	MAX		
Α	0.89	1.13	0.035	0.044		
A1	0.015	0.11	0.0006	0.0043		
A2	0.60	0.70	0.0236	0.0275		
D	2.72	3.12	0.1070	0.1228		
Е	2.60	3.00	0.1024	0.118		
E1	1.40	1.80	0.0551	0.0709		
е	0.95E	3SC	0.0	374		
L	0.30	0.60	0.0118	0.0236		
θ	0	8.	0	8.		

DIMENSIONS					
INCHES	MILLIMETERS				
0.101	2.60				
0.0058	0.15				
0.109	2.80				
0.037 BSC	0.95 BSC				
0.074 BSC	1.90 BSC				
0.0389	0.35				
	0.101 0.0058 0.109 0.037 BSC 0.074 BSC				

Notes

- Dimensioning and tolerances per ANSI Y14.5M, 1985.
- Controlling Dimension: Millimeter
- 3. Dimensions are exclusive of mold flash and metal burrs.

Marking Codes

Part Number	WS2.8LUC	WS05LUC	WS12LUC
Marking Code	2.8L	05L	12L

