PD - 94300C

International

SMPS MOSFET

IRFBA90N20D

HEXFET[®] Power MOSFET

Applications

• High frequency DC-DC converters

V _{DSS}	R _{DS(on)} max	I _D
200V	0.023 Ω	98A ©

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	986	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	71©	А
I _{DM}	Pulsed Drain Current ①	390	
P _D @T _C = 25°C	Power Dissipation	650	W
	Linear Derating Factor	4.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	6.3	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Recommended Clip Force	20	N

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		0.23	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{0JA}	Junction-to-Ambient		58	

Notes ① through ⑥ are on page 8 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.22		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.023	Ω	$V_{GS} = 10V, I_D = 59A$ (4)
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	ıιΔ	$V_{DS} = 200 V, V_{GS} = 0 V$
				250	μΛ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	م ا	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -30V

Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	41			S	V _{DS} = 50V, I _D = 59A
Qg	Total Gate Charge		160	240		I _D = 59A
Q _{gs}	Gate-to-Source Charge		45	67	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge		75	110	Ţ	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 100V
t _r	Rise Time		160		ns	I _D = 59A
t _{d(off)}	Turn-Off Delay Time		39		115	R _G = 1.2Ω
t _f	Fall Time		77			V _{GS} = 10V ④
C _{iss}	Input Capacitance		6080			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1040]	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		150		pF	f = 1.0 MHz
C _{oss}	Output Capacitance		7500		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		410]	$V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		790]	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		960	mJ
I _{AR}	Avalanche Current ^①		59	А
E _{AR}	Repetitive Avalanche Energy ^①		65	mJ

Diode Characteristics

	Parameter		Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			09		MOSFET symbol
	(Body Diode)			90	Δ	showing the
I _{SM}	Pulsed Source Current			390		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C, I_S = 59A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		220	340	nS	$T_J = 25^{\circ}C, I_F = 59A$
Q _{rr}	Reverse RecoveryCharge		1.9	2.8	μC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L		egligible (tum-on is dominated by L_S+L_D)			

International **ISR** Rectifier

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

www.irf.com

4

International

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

International TOR Rectifier

Super-220[™] Package Outline

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- CONTROLLING DIMENSION: MILLIMETER. 2.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-273AA.

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

② Starting $T_J = 25^{\circ}C$, L = 0.55mH

 $R_G = 25\Omega$, $I_{AS} = 59A$.

- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- $\ensuremath{\mathbb{S}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- 6 Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 95A.

$(3) I_{SD} \leq 59A, \ di/dt \leq 170A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ T, | ≤ 175°C

Super-220[™] not recommended for surface mount application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

> International **ICR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/04 8 www.irf.com