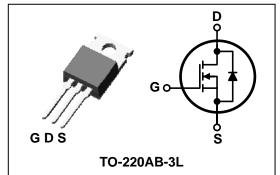


Advanced N-Ch Power MOSFET

SWITCHING REGULATOR APPLICATIONS

Features


• High Voltage: BV_{DSS}=600V(Min.)

Low C_{rss}: C_{rss}=18pF(Typ.)
Low gate charge : Qg=35nc(Typ.) • Low $R_{DS(on)}:R_{DS(on)}=0.75\Omega(Max.)$

Ordering Information

Type No.	Marking	Package Code
SMK1060P	SMK1060	TO-220AB-3L

PIN Connection

Absolute maximum ratings (T_C=25°C unless otherwise noted)

Characteristic		Symbol		Symbol		Symbol		Symbol		Ra	Rating		nit																		
Drain-source voltage		V_{DSS}		6	00	,	V																								
Gate-source voltage		V_{GSS}		V_{GSS}		V _{GSS}		V_{GSS}		V_{GSS}		V_{GSS}		V_{GSS}		V_{GSS}		V_{GSS}		V_{GSS}		V_{GSS}		V _{GSS}		V_{GSS}		<u>±</u> ,	30	,	V
Drain current (DC)*		I_D	(Tc=25℃)	1	10		A																								
		I D	(Tc=100℃)	6.	32		A																								
Drain current (Pulsed)*		I_{DM}		4	10		Α																								
Drain power dissipation			P_D	1	20	,	W																								
Avalanche current (Single)		I _{AS}		1	10		Α																								
Single pulsed avalanche energy (2		E _{AS}		4	90	r	nJ																								
Avalanche current (Repetitive))	I_{AR}		1	LO		A																								
Repetitive avalanche energy ①)	E _{AR}		E _{AR}		1:	1.6	r	nJ																						
Junction temperature		T ₁		1	50		°C																								
Storage temperature range		T _{stg}		-55	~150																										

^{*} Limited by maximum junction temperature

Chai	racteristic	Symbol	Тур.	Max	Unit
Thermal	Junction-case	$R_{th(J-C)}$	-	1.04	°C/W
resistance	Junction-ambient	$R_{th(J-a)}$	-	62.5	C/ VV

$\boldsymbol{Electrical\ Characteristics}\ (T_{\text{C}}\text{=}25^{\circ}\text{C}\ unless\ otherwise\ noted})$

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Drain-source breakdown voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0$	600	-	-	V
Gate threshold voltage	$V_{GS(th)}$	$I_D=250\mu A$, $V_{DS}=V_{GS}$	2.0	-	4.0	V
Drain-source cut-off current	I_{DSS}	V _{DS} =600V, V _{GS} =0V	-	-	1	μΑ
Gate leakage current	I_{GSS}	V_{DS} =0V, V_{GS} =±30V	-	-	±100	nA
Drain-source on-resistance 4	R _{DS(ON)}	V _{GS} =10V, I _D =5.0A	-	0.60	0.75	Ω
Forward transfer conductance 4	9 _{fs}	V _{DS} =10V, I _D =5.0A	-	8.0	-	S
Input capacitance	Ciss	V _{GS} =0V, V _{DS} =25V	-	2000	2350	
Output capacitance	Coss	f=1MHz	-	160	215	pF
Reverse transfer capacitance	Crss		-	18	-	
Turn-on delay time	t _{d(on)}		-	23	-	
Rise time	t _r	V_{DD} =300V, I_{D} =10A R_{G} =25 Ω	-	69	-	
Turn-off delay time	t _{d(off)}	34	-	144	-	ns
Fall time	t _f		-	77	-	
Total gate charge	Q_g	V _{DS} =480V, V _{GS} =10V	-	35	57	
Gate-source charge	Q_{gs}	$I_D=10A$	-	9.0	-	nC
Gate-drain charge	Q_{gd}	34	-	10	_	

Source-Drain Diode Ratings and Characteristics (T_C=25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Source current (DC)	Is	Integral reverse diode	-	-	10	Α
Source current (Pulsed) ①	I_{SM}	I_{SM} in the MOSFET		-	40	A
Forward voltage 4	V_{SD}	V_{GS} =0V, I_{S} =10A	-	-	1.4	V
Reverse recovery time	t _{rr}	I _s =10A, V _{GS} =0,	-	470	-	ns
Reverse recovery charge	Q_{rr}	di _s /dt=100A/ us	_	6	-	uC

Note;

 $\ensuremath{\textcircled{1}}$ Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature

② L=10mH, $I_{AS}\!\!=\!\!9.5A,\,V_{DD}\!\!=\!\!50V,\,R_{G}\!\!=\!\!25\Omega$, Starting $T_{J}=25\,^{\circ}\!\!C$

③ Pulse Test : Pulse Width < 300us, Duty cycle ≤ 2%

4 Essentially independent of operating temperature

Electrical Characteristic Curves

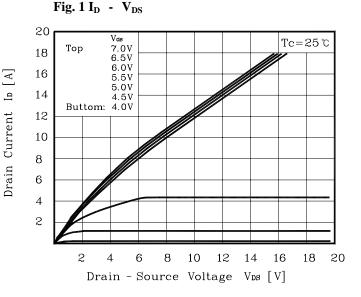


Fig. 2 $I_D\,$ - $\,V_{GS}\,$

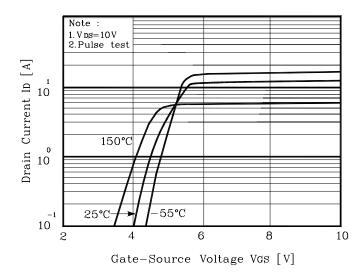


Fig. 3 $R_{DS(on)}$ - I_D

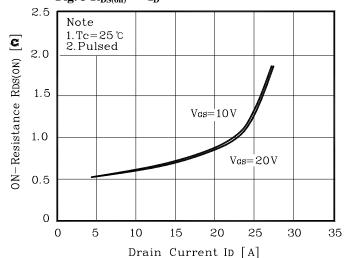


Fig. 4 I_S - V_{SD}

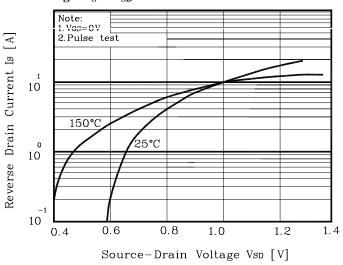
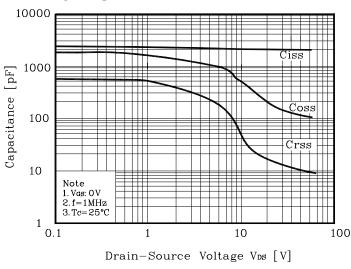
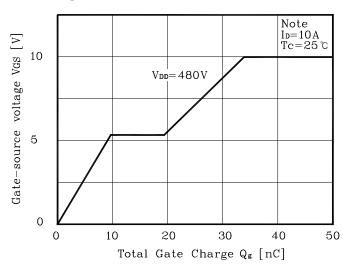
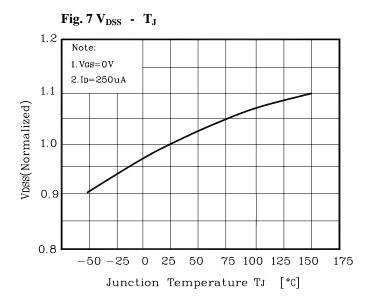
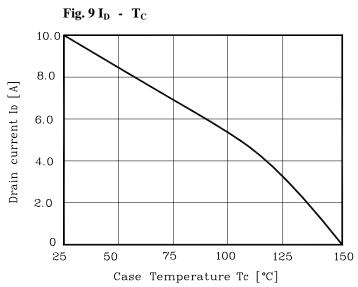
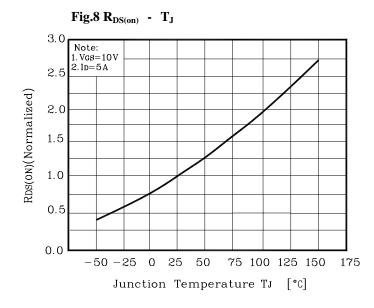
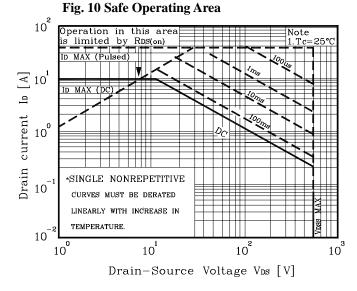


Fig. 5 Capacitance - V_{DS}


Fig.6 V_{GS} - Q_{G}



Electrical Characteristic Curves

KSD-T0P023-000

4

Fig. 10 Gate Charge Test Circuit & Waveform

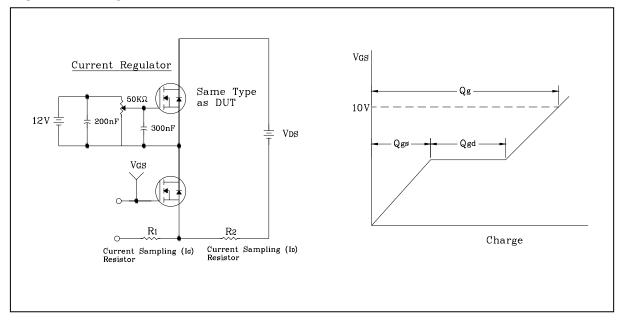


Fig. 11 Resistive Switching Test Circuit & Waveform

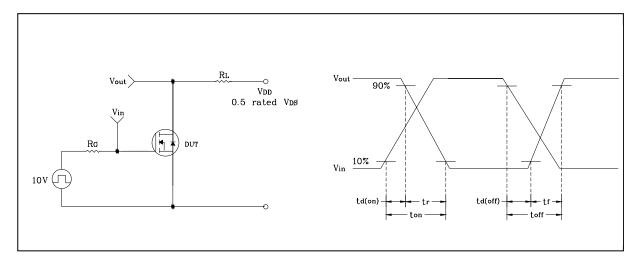


Fig. 12 E_{AS} Test Circuit & Waveform

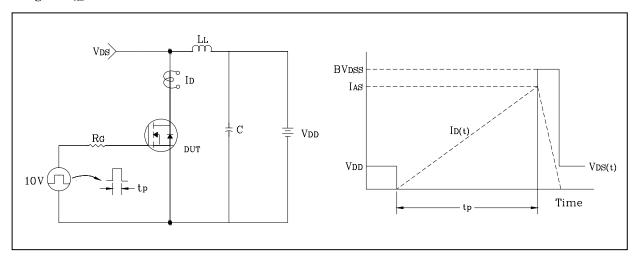
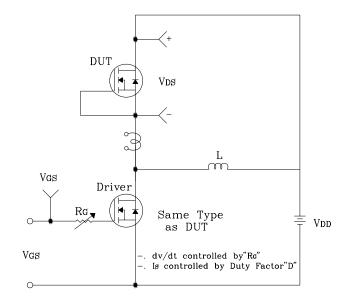
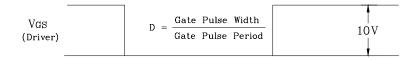
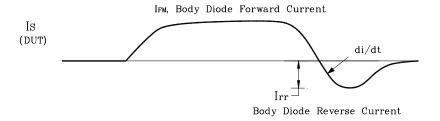
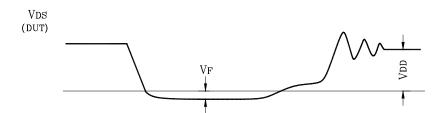
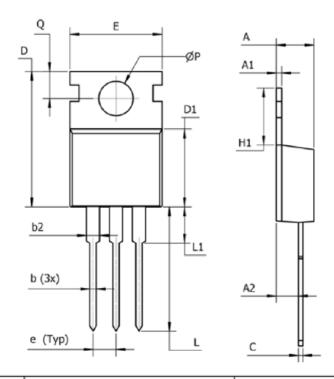






Fig. 13 Diode Reverse Recovery Time Test Circuit & Waveform



Outline Dimension

DIM	ММ	INCHES
D	14.22-16.51	0.560-0.650
ØP	Ø3.53-4.09	Ø0.139-0.161
H1	5.84-6.86	0.230-0.270
b	0.38-1.02	0.015-0.040
b2	1.14-1.78	0.045-0.070
D1	8.38-9.02	0.330-0.355
е	2.54	0.100
E	9.65-10.67	0.380-0.420
L1	6.35(MAX)	0.250(MAX)
Α	3.56-4.83	0.140-0.190
A1	0.51-0.71	0.020-0.028
L	12.70-14.73	0.500-0.580
A2	2.03-2.92	0.080-0.115
Q	2.54-3.43	0.100-0.135
С	0.36-0.61	0.014-0.024

KSD-T0P023-000 7

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.