

SMN01Z30Q

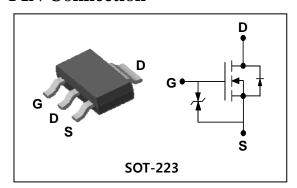
Advanced N-Ch Power MOSFET

SWITCHING REGULATOR APPLICATIONS

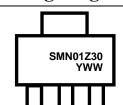
Features

• High Voltage : $BV_{DSS}=300V(Min.)$

• Low C_{rss} : C_{rss} =3.2pF(Typ.)


• Low gate charge : Qg=2.9nC(Typ.)

• Low $R_{DS(on)}$: $R_{DS(on)}=8\Omega(Max.)$


Ordering Information

Type No.	Marking	Package Code
SMN01Z30Q	SMN01Z30	SOT-223

PIN Connection

Marking Diagram

Column 1 : Device Code

Column 2: Production Information

e.g.) YWW

-. Y : Year Code -. WW : Week Code

Absolute maximum ratings (T_C=25°C unless otherwise noted)

Characteristic		Symbol		Rating	Unit		
Drain-source voltage		V_{DSS}		300	V		
Gate-source voltage		V_{GSS}		V_{GSS}		±20	V
Drain current (DC) *		т	T _C =25°C	1.3	Α		
Drain current (DC)		I_D	T _C =100°C	0.78	Α		
Drain current (Pulsed) *		I_{DM}		5.2	Α		
Power dissipation		P _D		2.1	W		
Avalanche current (Single)	2	I_{AS}		1.3	Α		
Single pulsed avalanche energy	2	E _{AS}		182.6	mJ		
Avalanche current (Repetitive)	①	I_{AR}		1.3	Α		
Repetitive avalanche energy	①	E _{AR}		0.2	mJ		
Junction temperature		Tı		150	°C		
Storage temperature range		T _{stg}		-55~150	٠		

^{*} Limited by maximum junction temperature

Characteristic		Symbol	Typ.	Max.	Unit	
Thermal resistance	Junction-ambient	$R_{th(\mathtt{J-A})}$	-	60	°C/W	

KSD-T5A005-000

$\boldsymbol{Electrical\ Characteristics}\ (T_{\text{C}}\text{=}25^{\circ}\text{C}\ unless\ otherwise\ noted})$

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	BV_{DSS}	I _D =250uA, V _{GS} =0V	300	-	-	V
Gate threshold voltage	$V_{GS(th)}$	$I_D=250uA$, $V_{DS}=V_{GS}$	1.5	2.0	2.5	V
Drain-source cut-off current	I_{DSS}	V _{DS} =300V, V _{GS} =0V	-	-	1	uA
Gate leakage current	I_{GSS}	V_{DS} =0V, V_{GS} =±15V	-	-	±10	uA
Drain-source on-resistance ④	R _{DS(on)}	V _{GS} =10V, I _D =650mA	-	6.9	8	Ω
Forward transfer conductance ④	g _{fs}	V_{DS} =10V, I_{D} =650mA	-	0.4	-	S
Input capacitance	C _{iss}		-	101	130	
Output capacitance	C _{oss}	V _{GS} =0V, V _{DS} =25V f=1 MHz	-	15	20	pF
Reverse transfer capacitance	C _{rss}		-	3.2	5.0	
Turn-on delay time	t _{d(on)}		-	5	20	
Rise time	t _r	$V_{DD} = 150V, I_{D} = 1.3A$	-	17	44	nc
Turn-off delay time	t _{d(off)}	$R_G=25\Omega$ 3.4	-	21	52	ns
Fall time	t _f		-	35	80	
Total gate charge	Q_g	V _{DS} =240V, V _{GS} =10V	-	2.9	4.5	
Gate-source charge	Q_{gs}	I _D =1.3A	-	0.4	-	nC
Gate-drain charge	Q_{gd}	34	-	0.7	-	

Source-Drain Diode Ratings and Characteristics (T_C=25°C unless otherwise noted)

		, ē				
Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Source current (DC)	I_S	Integral reverse diode	-	-	1.3	^
Source current (Pulsed)	I_{SM}	in the MOSFET	-	-	5.2	Α
Forward voltage 4	V_{SD}	V_{GS} =0V, I_{S} =1.3A	-	-	1.4	V
Reverse recovery time	t _{rr}	I _S =1.3A, V _{GS} =0V	-	270	-	ns
Reverse recovery charge	Q _{rr}	dI _F /dt=100A/us	-	0.27	-	uC

Gate to Source Zener Diode (T_C=25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Gate-Source Breakdown Voltage	$\pm BV_{GSO}$	$I_G=\pm 1$ mA, $V_{DS}=0$ V	±20	±24	-	V

Note;

① Repetitive rating: Pulse width limited by maximum junction temperature

② L=180mH, I_{AS} =1.3A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C

③ Pulse Test : Pulse width≤300us, Duty cycle≤2%

4 Essentially independent of operating temperature

Electrical Characteristic Curves

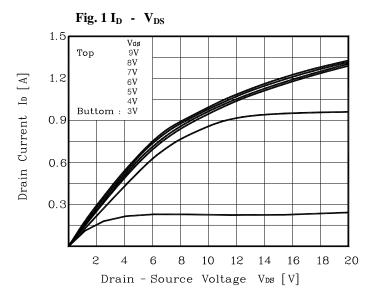
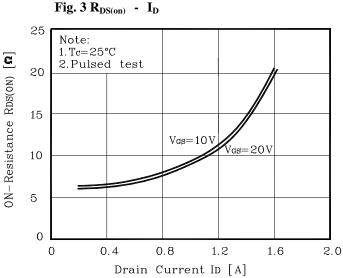
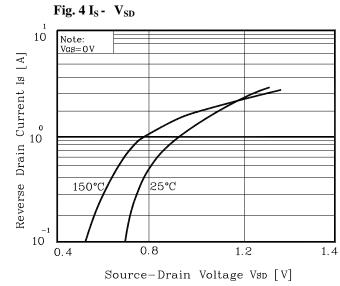
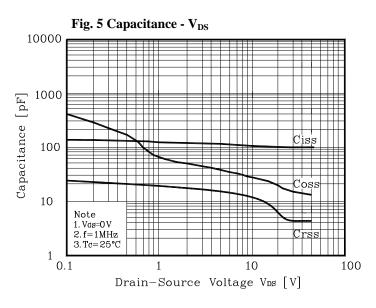
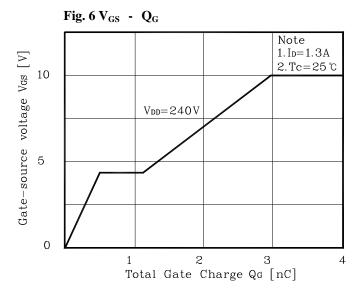


Fig. 2 I_D - V_{GS}


10


Note:
1. V_{DS}=10V
2. Pulse test


150°C


2 4 6 8 10

Gate-Source Voltage VGS [V]

SMN01Z30Q

Electrical Characteristic Curves

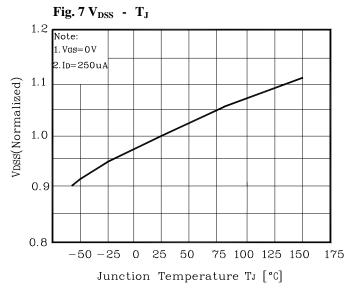
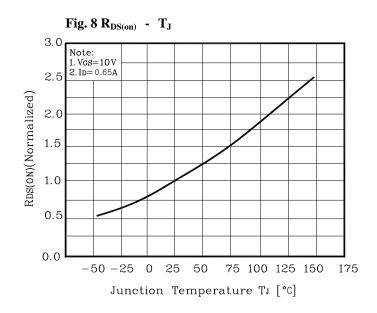


Fig. 9 I_D - T_C

1.6


[V] 1.2

0.8

0.4

0 25 50 75 100 125 150

Case Temperature Tc [°C]

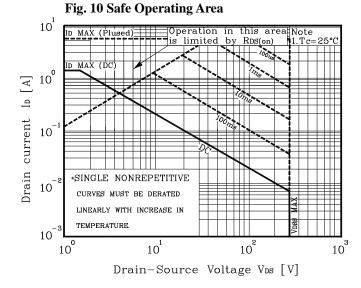


Fig. 11 Gate Charge Test Circuit & Waveform

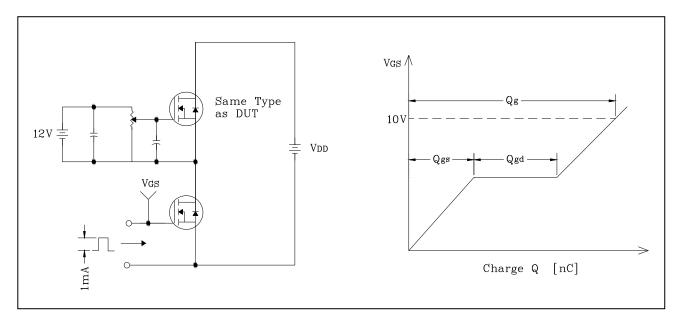


Fig. 12 Switching Time Test Circuit & Waveform

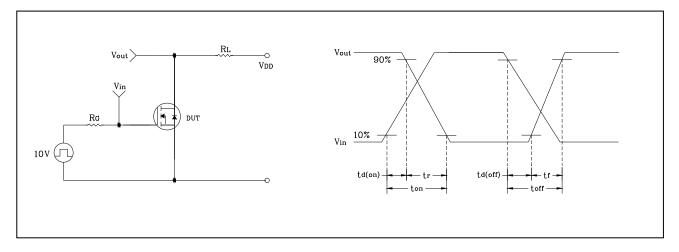


Fig. 13 E_{AS} Test Circuit & Waveform

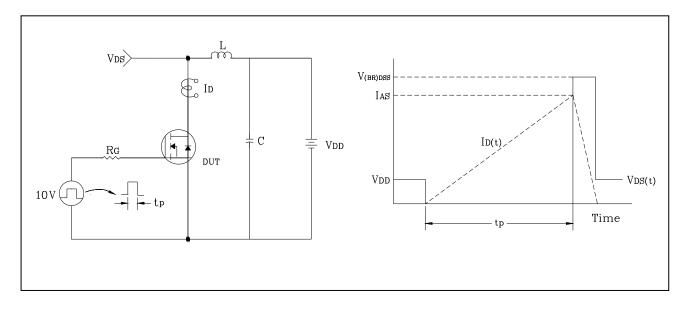
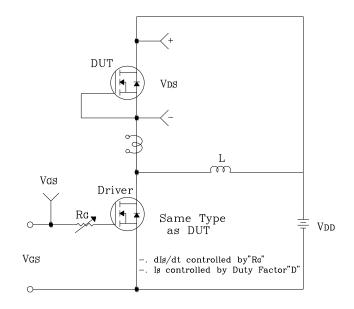
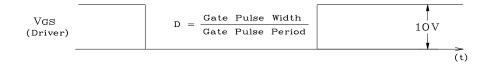
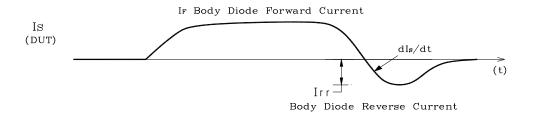
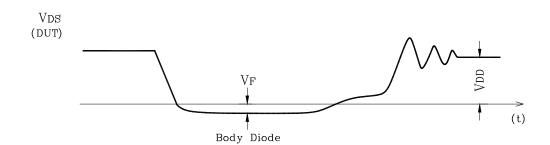
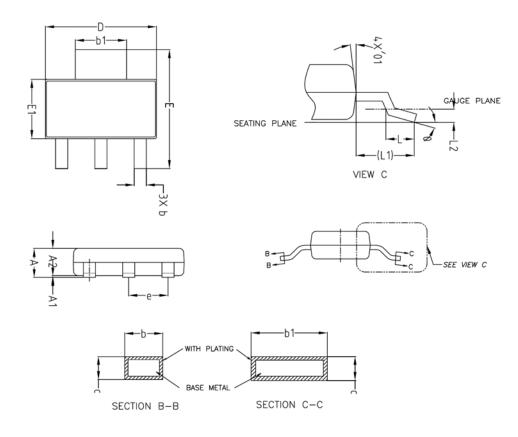
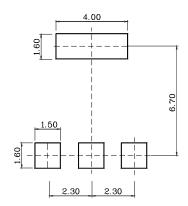






Fig. 14 Peak Diode Recovery dv/dt Test Circuit & Waveform




Outline Dimension

unit: mm

	MILLIMETERS				
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE	
Α	_	_	1.80		
A1	0.00	_	0.10		
A2	1.60	1.65	1.70		
Ь	0.68	_	0.76		
ь1	2.95	_	3.07		
С	0.23	_	0.28		
D	6.40	6.50	6.60		
Ε	6.80	7.00	7.20		
E1	3.40	3.50	3.60		
е		2.30 BSC			
L	0.45	_	0.65		
L1		1.75 REF			
L2		0.10 BSC			
0	0,	_	10*		
0 1	5*	_	10°	Г	

**** Recommended Land Pattern** [unit: mm]

SMN01Z30Q

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.

KSD-T5A005-000