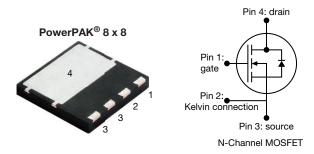


www.vishay.com


Vishay Siliconix

COMPLIANT

HALOGEN

**FREE** 

## **EF Series Power MOSFET With Fast Body Diode**



| PRODUCT SUMMARY                            |                              |     |  |  |  |
|--------------------------------------------|------------------------------|-----|--|--|--|
| V <sub>DS</sub> (V) at T <sub>J</sub> max. | 650                          |     |  |  |  |
| R <sub>DS(on)</sub> typ. (Ω) at 25 °C      | V <sub>GS</sub> = 10 V 0.091 |     |  |  |  |
| Q <sub>g</sub> max. (nC)                   | 50                           |     |  |  |  |
| Q <sub>gs</sub> (nC)                       | 16                           |     |  |  |  |
| Q <sub>gd</sub> (nC)                       | 8                            | 3   |  |  |  |
| Configuration                              | Sin                          | gle |  |  |  |

#### **FEATURES**

- 4<sup>th</sup> generation E series technology
- Low figure-of-merit (FOM) Ron x Qg
- Low effective capacitance (Co(er))
- Reduced switching and conduction losses
- Avalanche energy rated (UIS)
- · Kelvin connection for reduced gate noise
- Material categorization: for definitions of compliance please see <a href="https://www.vishav.com/doc?99912"><u>www.vishav.com/doc?99912</u></a>

#### **APPLICATIONS**

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
  - High-intensity discharge (HID)
  - Fluorescent ballast lighting
- Industrial
  - Welding
  - Induction heating
  - Motor drives
  - Battery chargers
  - Solar (PV inverters)

| ORDERING INFORMATION            |                    |
|---------------------------------|--------------------|
| Package                         | PowerPAK 8 x 8     |
| Lead (Pb)-free and halogen-free | SIHH105N60EF-T1GE3 |

| ABSOLUTE MAXIMUM RATINGS (To                        | = 25 °C, unless otherwis                                        | se noted)                         |             |       |
|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|-------------|-------|
| PARAMETER                                           | SYMBOL                                                          | LIMIT                             | UNIT        |       |
| Drain-source voltage                                | $V_{DS}$                                                        | 600                               | V           |       |
| Gate-source voltage                                 | $V_{GS}$                                                        | ± 30                              | V           |       |
| Continuous drain current (T <sub>.1</sub> = 150 °C) | $V_{GS}$ at 10 V $T_{C} = 25 ^{\circ}C$ $T_{C} = 100 ^{\circ}C$ | - I <sub>D</sub>                  | 26          | А     |
| Continuous drain current (1) = 130 °C)              | $T_C = 100 ^{\circ}$ C                                          |                                   | 17          |       |
| Pulsed drain current <sup>a</sup>                   | I <sub>DM</sub>                                                 | 59                                |             |       |
| Linear derating factor                              |                                                                 |                                   | 1.38        | W/°C  |
| Single pulse avalanche energy b                     |                                                                 | E <sub>AS</sub>                   | 127         | mJ    |
| Maximum power dissipation                           |                                                                 | $P_{D}$                           | 174         | W     |
| Operating junction and storage temperature range    |                                                                 | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C    |
| Drain-source voltage slope                          | dv/dt                                                           | 100                               | V/ns        |       |
| Reverse diode dv/dt <sup>c</sup>                    |                                                                 | uv/ut                             | 50          | V/IIS |

#### Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature
- b.  $V_{DD} = 140 \text{ V}$ , starting  $T_J = 25 \,^{\circ}\text{C}$ ,  $L = 28.2 \,\text{mH}$ ,  $R_g = 25 \,\Omega$ ,  $I_{AS} = 3.0 \,\text{A}$
- c.  $I_{SD} \le I_D$ , di/dt = 120 A/ $\mu$ s, starting  $T_J$  = 25 °C



www.vishay.com

# Vishay Siliconix

| THERMAL RESISTANCE RATINGS       |                   |      |      |       |
|----------------------------------|-------------------|------|------|-------|
| PARAMETER                        | SYMBOL            | TYP. | MAX. | UNIT  |
| Maximum junction-to-ambient      | R <sub>thJA</sub> | 40   | 42   | °C/W  |
| Maximum junction-to-case (drain) | R <sub>thJC</sub> | 0.55 | 0.72 | G/ VV |

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYMBOL                | TES                                   | T CONDITIONS                                                      | MIN. | TYP.  | MAX.  | UNIT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|-------------------------------------------------------------------|------|-------|-------|------|
| Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       |                                                                   |      | l     |       |      |
| Drain-source breakdown voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>DS</sub>       | V <sub>GS</sub> =                     | = 0 V, I <sub>D</sub> = 250 μA                                    | 600  | -     | -     | V    |
| V <sub>DS</sub> temperature coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta V_{DS}/T_{J}$ | Referenc                              | e to 25 °C, I <sub>D</sub> = 1 mA                                 | -    | 0.62  | -     | V/°C |
| Gate-source threshold voltage (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>GS(th)</sub>   | V <sub>DS</sub> =                     | · V <sub>GS</sub> , I <sub>D</sub> = 250 μA                       | 3.0  | -     | 5.0   | V    |
| Osta a superiori de la constanta de la constan |                       | ,                                     | V <sub>GS</sub> = ± 20 V                                          | -    | -     | ± 100 | nA   |
| Gate-source leakage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I <sub>GSS</sub>      | ,                                     | $V_{GS} = \pm 30 \text{ V}$                                       | -    | -     | ± 1   |      |
| Zana anta callana dusia accumant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | V <sub>DS</sub> =                     | : 480 V, V <sub>GS</sub> = 0 V                                    | -    | -     | 1     | μA   |
| Zero gate voltage drain current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>DSS</sub>      | V <sub>DS</sub> = 480 V               | ', V <sub>GS</sub> = 0 V, T <sub>J</sub> = 125 °C                 | -    | -     | 2     | mA   |
| Drain-source on-state resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R <sub>DS(on)</sub>   | V <sub>GS</sub> = 10 V                | I <sub>D</sub> = 13 A                                             | -    | 0.091 | 0.105 | Ω    |
| Forward transconductance <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 <sub>fs</sub>       | $V_{DS}$                              | = 10 V, I <sub>D</sub> = 13 A                                     | -    | 13    | -     | S    |
| Dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                       |                                                                   |      |       |       |      |
| Input capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>iss</sub>      | $V_{GS} = 0 V$ ,                      |                                                                   | -    | 2099  | -     |      |
| Output capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>oss</sub>      | Ţ,                                    | V <sub>DS</sub> = 100 V,                                          | -    | 87    | -     |      |
| Reverse transfer capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>rss</sub>      | 1                                     | f = 1 MHz                                                         | -    | 5     | -     |      |
| Effective output capacitance, energy related <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>o(er)</sub>    | ., .,                                 | /+- 400 V V 0 V                                                   | -    | 65    | -     | pF   |
| Effective output capacitance, time related <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>o(tr)</sub>    | $V_{DS} = 0$                          | V to 480 V, V <sub>GS</sub> = 0 V                                 | -    | 408   | -     |      |
| Total gate charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qg                    |                                       |                                                                   | -    | 33    | 50    |      |
| Gate-source charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q <sub>gs</sub>       | V <sub>GS</sub> = 10 V                | $I_D = 13 \text{ A}, V_{DS} = 480 \text{ V}$                      | -    | 16    | -     | nC   |
| Gate-drain charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <sub>gd</sub>       |                                       |                                                                   | -    | 8     | -     |      |
| Turn-on delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>d(on)</sub>    |                                       |                                                                   | -    | 31    | 62    |      |
| Rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <sub>r</sub>        | V <sub>DD</sub> =                     | : 480 V, I <sub>D</sub> = 13 A,                                   | -    | 62    | 93    |      |
| Turn-off delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>d(off)</sub>   | V <sub>GS</sub> =                     | $= 10 \text{ V, R}_{g} = 9.1 \Omega$                              | -    | 38    | 76    | ns   |
| Fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <sub>f</sub>        | 1                                     |                                                                   | -    | 28    | 56    |      |
| Gate input resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_g$                 |                                       | f = 1 MHz                                                         | 0.35 | 0.7   | 1.4   | Ω    |
| Drain-Source Body Diode Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s                     |                                       |                                                                   |      |       |       |      |
| Continuous source-drain diode current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>S</sub>        | MOSFET sym showing the                |                                                                   | -    | -     | 26    |      |
| Pulsed diode forward current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I <sub>SM</sub>       | integral reverse p - n junction diode |                                                                   | -    | -     | 59    | - A  |
| Diode forward voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>SD</sub>       | T <sub>J</sub> = 25 °C                | C, I <sub>S</sub> = 13 A, V <sub>GS</sub> = 0 V                   | -    | _     | 1.2   | V    |
| Reverse recovery time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>rr</sub>       |                                       |                                                                   | -    | 126   | 252   | ns   |
| Reverse recovery charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q <sub>rr</sub>       |                                       | $5 ^{\circ}\text{C},  I_{\text{F}} = I_{\text{S}} = 13 \text{A},$ | -    | 0.6   | 1.2   | μC   |
| Reverse recovery current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I <sub>RRM</sub>      |                                       | 100 A/ $\mu$ s, V <sub>R</sub> = 25 V                             | _    | 9.4   | -     | A    |

### Notes

- a.  $C_{oss(er)}$  is a fixed capacitance that gives the same energy as  $C_{oss}$  while  $V_{DS}$  is rising from 0 % to 80 %  $V_{DSS}$
- b.  $C_{oss(tr)}$  is a fixed capacitance that gives the same charging time as  $C_{oss}$  while  $V_{DS}$  is rising from 0 % to 80 %  $V_{DSS}$



### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

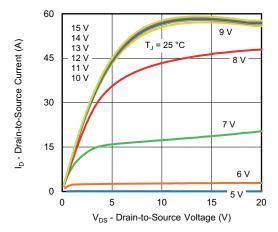



Fig. 1 - Typical Output Characteristics

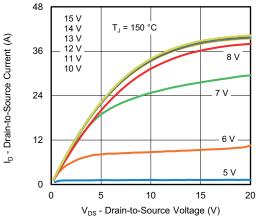



Fig. 2 - Typical Output Characteristics

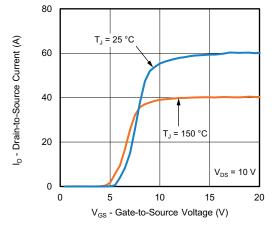



Fig. 3 - Typical Transfer Characteristics

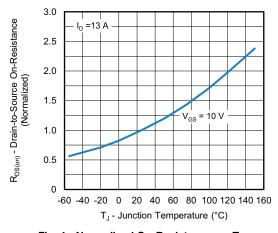



Fig. 4 - Normalized On-Resistance vs. Temperature

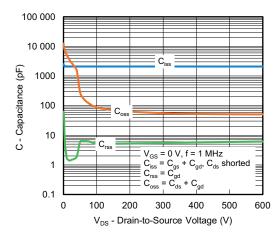



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

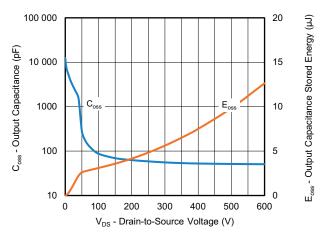



Fig. 6 - Coss and Eoss vs. VDS

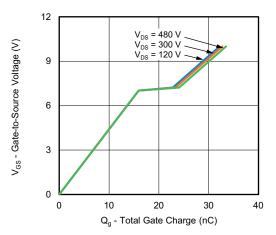



Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

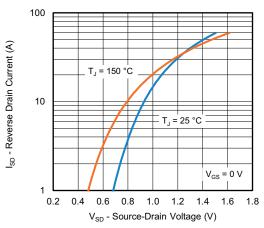



Fig. 8 - Typical Source-Drain Diode Forward Voltage

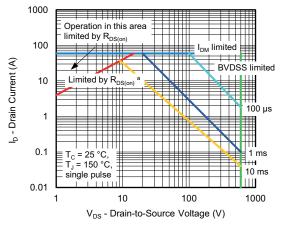



Fig. 9 - Maximum Safe Operating Area

#### Note

a.  $V_{GS}$  > minimum  $V_{GS}$  at which  $R_{DS(on)}$  is specified

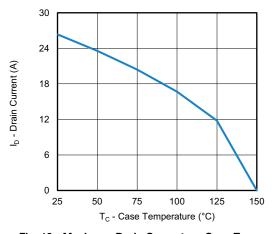



Fig. 10 - Maximum Drain Current vs. Case Temperature

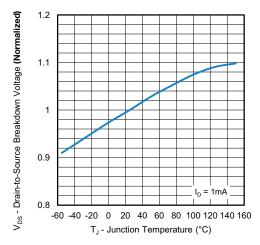



Fig. 11 - Temperature vs. Drain-to-Source Voltage



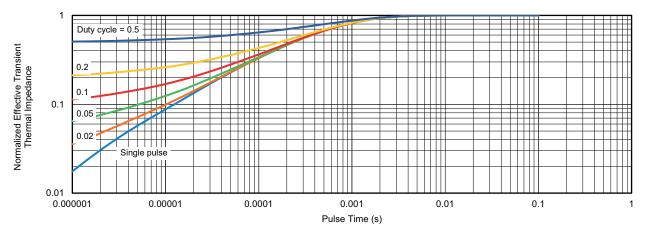



Fig. 12 - Normalized Transient Thermal Impedance, Junction-to-Case

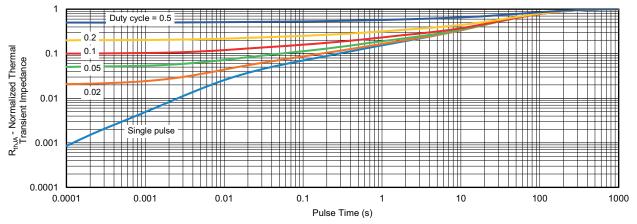



Fig. 13 - Normalized Thermal Transient Impedance, Junction-to-Ambient

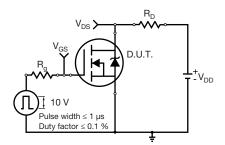



Fig. 14 - Switching Time Test Circuit

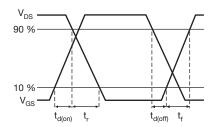



Fig. 15 - Switching Time Waveforms

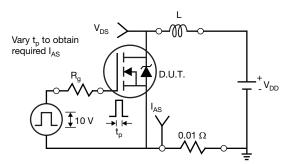



Fig. 16 - Unclamped Inductive Test Circuit

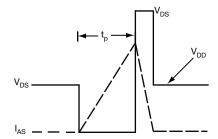



Fig. 17 - Unclamped Inductive Waveforms

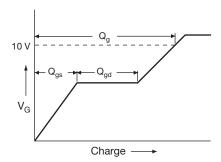



Fig. 18 - Basic Gate Charge Waveform

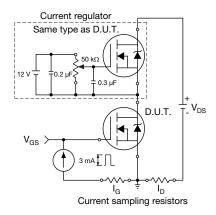
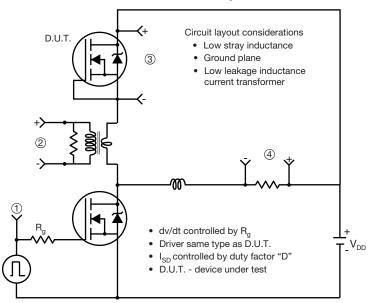
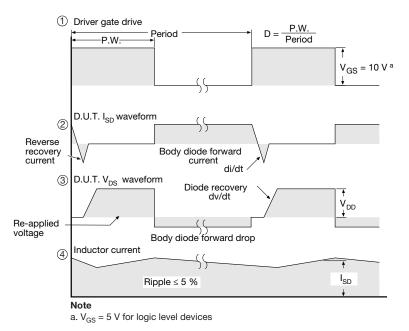



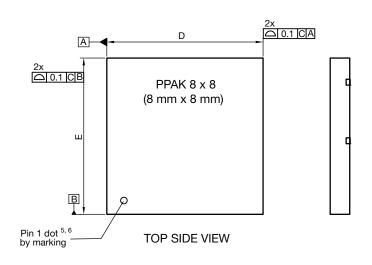

Fig. 19 - Gate Charge Test Circuit

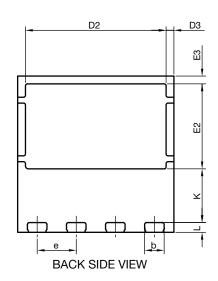


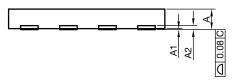
#### Peak Diode Recovery dv/dt Test Circuit







Fig. 20 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?92415">www.vishay.com/ppg?92415</a>.




Vishay Siliconix

## PowerPAK® 8 x 8 Case Outline



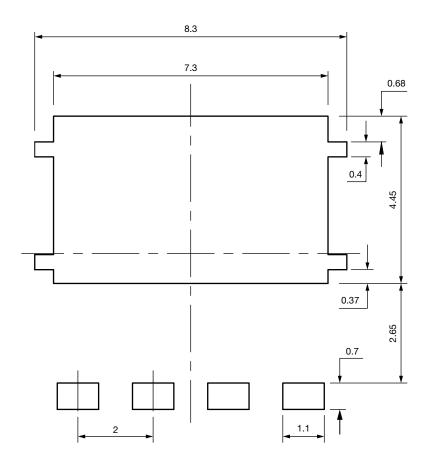




| DIM.             | MILLIMETERS |      | INCHES    |           |            |       |
|------------------|-------------|------|-----------|-----------|------------|-------|
| DIIVI.           | MIN.        | NOM. | MAX.      | MIN.      | NOM.       | MAX.  |
| Α                | 0.95        | 1.00 | 1.05      | 0.037     | 0.039      | 0.041 |
| A1               | 0.00        | -    | 0.05      | 0.000     | -          | 0.002 |
| A2               | 020 ref.    |      |           |           | 0.008 ref. |       |
| b                | 0.95        | 1.00 | 1.05      | 0.037     | 0.039      | 0.041 |
| D                | 7.90        | 8.00 | 8.10      | 0.311     | 0.315      | 0.319 |
| D2               | 7.10        | 7.20 | 7.30      | 0.280     | 0.283      | 0.287 |
| D3               | 0.40 BSC    |      |           | 0.016 BSC |            |       |
| е                | 2.00 BSC    |      | 0.079 BSC |           |            |       |
| E                | 7.90        | 8.00 | 8.10      | 0.311     | 0.315      | 0.319 |
| E2               | 4.30        | 4.35 | 4.40      | 0.169     | 0.171      | 0.173 |
| E3               | 0.40 BSC    |      |           |           | 0.016 BSC  |       |
| K                | 2.75 BSC    |      | 0.108 BSC |           |            |       |
| L                | 0.45        | 0.50 | 0.55      | 0.018     | 0.020      | 0.022 |
| N <sup>(3)</sup> | 8           |      |           |           | 8          |       |

#### Notes

- (1) Use millimeters as the primary measurement
- (2) Dimensioning and tolerances conform to ASME Y14.5 M 1994
- (3) N is the number of terminals
- (4) The pin 1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body
- (5) Exact shape and size of this feature is optional


ECN: E20-0518-Rev. B, 28-Sep-2020

DWG: 6041

Revision: 28-Sep-2020 1 Document Number: 67859



# Recommended Minimum PADs for PowerPAK® 8 mm x 8 mm



Dimensions in millimeters



### **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.