

E Series Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V) at T _J max.	700				
R _{DS(on)} max. at 25 °C (Ω)	$V_{GS} = 10 V$	0.072			
Q _g max. (nC)	273				
Q _{gs} (nC)	46				
Q _{gd} (nC)	79				
Configuration	Single				

N-Channel MOSFET

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (C_{iss})
- · Reduced switching and conduction losses
- Ultra low gate charge (Qg)
- Avalanche energy rated (UIS)
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy
 - Solar (PV inverters)

ORDERING INFORMATION	
Package	TO-247AD
Lead (Pb)-free and Halogen-free	SiHW47N65E-GE3

PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage	V _{DS}	650			
Gate-Source Voltage	N/	± 20	V		
Gate-Source Voltage AC (f > 1 Hz)	V _{GS}	30			
Continuous Drain Current (T _J = 150 °C)	$T_{\rm C} = 25 ^{\circ}{\rm C}$		47		
	$V_{GS} \text{ at 10 V} \qquad \frac{T_C = 25 \text{ °C}}{T_C = 100 \text{ °C}}$	ID	30	А	
Pulsed Drain Current ^a	I _{DM}	139	1		
Linear Derating Factor			3.3	W/°C	
Single Pulse Avalanche Energy ^b		E _{AS}	1410	mJ	
Maximum Power Dissipation	PD	417	W		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C	
Drain-Source Voltage Slope	T _J = 125 °C	-11 (/ -14	37		
Reverse Diode dV/dt ^d		dV/dt	9	V/ns	
Soldering Recommendations (Peak Temperature) ^c	for 10 s		300	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 $\Omega,$ I_{AS} = 10 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D$, dI/dt = 100 A/µs, starting T_J = 25 °C.

S13-2459-Rev. C, 02-Dec-13

1

Document Number: 91561

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

ROHS COMPLIANT

HALOGEN

FREE

Vishay Siliconix

Static V _{QS} = 0 V, I _D = 250 µA 650 - V Drain-Source Breakdown Voltage $\Delta V_{OS}/T_{J}$ Reference to 25 °C, I _D = 1 mA - 0.70 - V/C Gate-Source Threshold Voltage (N) V _{SS} (m) V _{DS} = 420 V - - 4 V Gate-Source Leakage I _{GSS} V _{GS} = 20 V - - 4 V Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 520 V, V _{GS} = 0 V - - 1 µA Drain-Source On-State Resistance R _{DS(m)} V _{DS} = 520 V, V _{GS} = 0 V, T _J = 125 °C - - 25 - Iput Capacitance C _{Ges} V _{DS} = 520 V, V _{GS} = 0 V, T _J = 125 °C - 16.7 - S Output Capacitance C _{Ges} V _{DS} = 100 V, T = 125 °C - 16.7 - S P Reference to 25 0 V, V _{OS} = 0 V, V to 520 V, V _{GS} = 0 V - 1665 - 192 - 1 - 192 - 192 - 192 - 192 - 192<	THERMAL RESISTANCE RATI	NGS								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP. MAX.			UNIT				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Ambient	R _{thJA}	- 40							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)		- 0.3				- °C/W			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Static V _{QS} = 0 V, I _D = 250 µA 650 - V Drain-Source Breakdown Voltage $\Delta V_{OS}/T_{J}$ Reference to 25 °C, I _D = 1 mA - 0.70 - V/C Gate-Source Threshold Voltage (N) V _{SS} (m) V _{DS} = 420 V - - 4 V Gate-Source Leakage I _{GSS} V _{GS} = 20 V - - 4 V Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 520 V, V _{GS} = 0 V - - 1 µA Drain-Source On-State Resistance R _{DS(m)} V _{DS} = 520 V, V _{GS} = 0 V, T _J = 125 °C - - 25 - Iput Capacitance C _{Ges} V _{DS} = 520 V, V _{GS} = 0 V, T _J = 125 °C - 16.7 - S Output Capacitance C _{Ges} V _{DS} = 100 V, T = 125 °C - 16.7 - S P Reference to 25 0 V, V _{OS} = 0 V, V to 520 V, V _{GS} = 0 V - 1665 - 192 - 1 - 192 - 192 - 192 - 192 - 192<	SPECIFICATIONS ($T_J = 25 \text{ °C}$, u	nless otherwi	ise noted)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D =	250 µA	650	-	-	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C,	$I_D = 1 \text{ mA}$	-	0.70	-	V/°C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D =	250 µA	2	-	4	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage			$V_{GS} = \pm 20$	V	-	-	± 100	nA	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _{DS} =	V _{DS} = 650 V, V _{GS} = 0 V		-	-	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	IDSS	V _{DS} = 520 V				-	25	μA	
$ \begin{array}{ c c c c c c } \hline \textbf{Dynamic} & \textbf{L}_{C} & \textbf{I}_{C} & \textbf{L}_{C} & \textbf{I}_{C} $	Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I	_D = 24 A	-	0.060	0.072	Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance	9 _{fs}	V _{DS} = 30 V, I _D = 24 A		-	16.7	-	S		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic					•	•			
$ \begin{array}{ c c c c c c } \hline \text{Output Capacitance} & C_{\text{oss}} & V_{\text{DS}} = 100 \text{ V}, & - & 251 & - & \\ \hline \text{Reverse Transfer Capacitance} & C_{\text{rss}} & & & & \\ \hline \text{F=1 MHz} & - & 1 & - & \\ \hline \text{I} & 1 & - & & \\ \hline \text{Related}^{\text{Belated}^{B$	Input Capacitance	C _{iss}	V _{DS} = 100 V,		-	5682	-	pF		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}			-	251	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	1	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(er)}	$V_{DS} = 0$ V to 520 V, $V_{GS} = 0$ V		-	192	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(tr)}			-	665	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Qq				-	182	273		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	I _D = 24	A, V _{DS} = 520 V	-	46	-	nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge					-	79	-	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time				-	47	94			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	t _r			-	87	131	ns		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}			-	156	234			
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode47APulsed Diode Forward CurrentIsMIsMTJ = 25 °C, Is = 24 A, V_{GS} = 0 V-0.91.2VDiode Forward VoltageV_{SDTJ = 25 °C, Is = 24 A, V_{GS} = 0 V-0.91.2VReverse Recovery TimetrrTJ = 25 °C, IF = Is = 24 A, dI/dt = 100 A/µs, VR = 25 V-1428µC	Fall Time	t _f			-	103	206			
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode47APulsed Diode Forward CurrentIsMIsM $T_J = 25 \degree C$, $I_S = 24 A$, $V_{GS} = 0 V$ -0.91.2VDiode Forward Voltage V_{SD} $T_J = 25 \degree C$, $I_S = 24 A$, $V_{GS} = 0 V$ -0.91.2VReverse Recovery Time t_{rr} $T_J = 25 \degree C$, $I_F = I_S = 24 A$, dl/dt = 100 A/µs, $V_R = 25 V$ -1428µC	Gate Input Resistance	Rg	f = 1 MHz, open drain		-	0.64	-	Ω		
Continuous Source-Drain Diode CurrentISshowing the integral reverse $p - n$ junction diodeIII <td>Drain-Source Body Diode Characteristic</td> <td>s</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>	Drain-Source Body Diode Characteristic	s					•			
Pulsed Diode Forward CurrentIsmIntegral reverse p - n junction diode139Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 24 \ A$, $V_{GS} = 0 \ V$ -0.91.2VReverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 24 \ A$, dl/dt = 100 A/µs, $V_R = 25 \ V$ -7531506ns	Continuous Source-Drain Diode Current	I _S	showing the integral reverse		-	-	47			
Reverse Recovery Time t_{rr} $-$ 7531506nsReverse Recovery Charge Q_{rr} $dI/dt = 100 A/\mu s, V_R = 25 V$ $-$ 1428 μC	Pulsed Diode Forward Current	I _{SM}			-	-	139	A		
Reverse Recovery Time t_{rr} $-$ 7531506nsReverse Recovery Charge Q_{rr} $dI/dt = 100 A/\mu s, V_R = 25 V$ $-$ 1428 μC	Diode Forward Voltage	V _{SD}	$T_{.1} = 25 \text{ °C}, I_S = 24 \text{ A}. V_{CS} = 0 \text{ V}$		-	0.9	1.2	V		
Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 24 \ A$, $dI/dt = 100 \ A/\mu s$, $V_R = 25 \ V$ $- \ 14 \ 28 \ \mu C$	3		T _J = 25 °C, I _F = I _S = 24 A,		-	753	1506	ns		
di/dt = 100 A/µs, v _R = 25 v	,				-	14		μC		
	Reverse Recovery Current	I _{BBM}			-	28	-	A		

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

b. Coss(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 % to 80 % VDSS.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

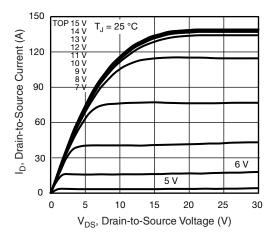


Fig. 1 - Typical Output Characteristics

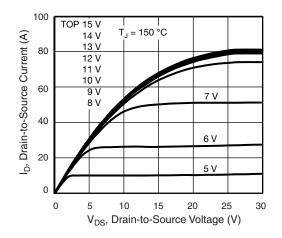


Fig. 2 - Typical Output Characteristics

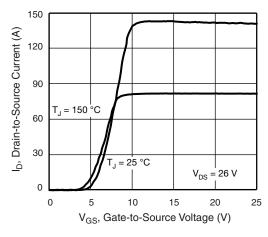


Fig. 3 - Typical Transfer Characteristics

S13-2459-Rev. C, 02-Dec-13

3 24 A R_{DS(on)}, Drain-to-Source On Resistance (Normalized) 2.5 2 1.5 10 V 1 V_{GS} = 0.5 0 - 60 - 40 - 20 100 120 140 160 0 20 40 60 80 T_J, Junction Temperature (°C)

Fig. 4 - Normalized On-Resistance vs. Temperature

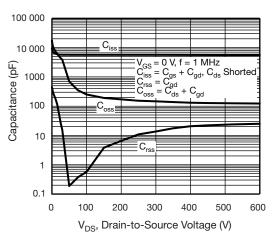
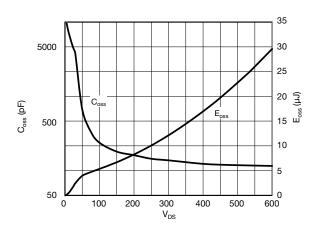




Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

3

Vishay Siliconix

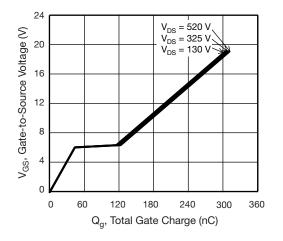


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

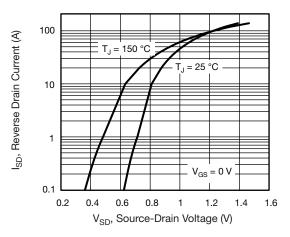


Fig. 8 - Typical Source-Drain Diode Forward Voltage

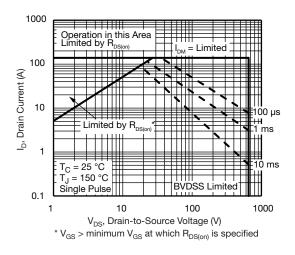


Fig. 9 - Maximum Safe Operating Area

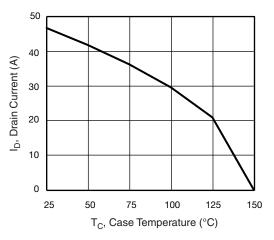


Fig. 10 - Maximum Drain Current vs. Case Temperature

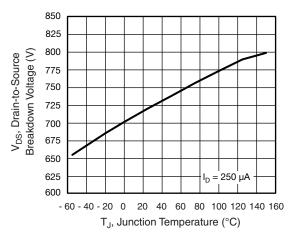
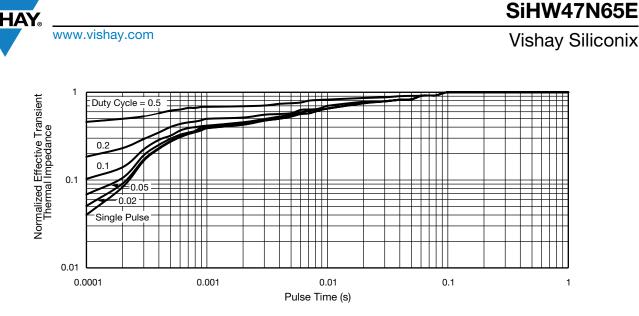



Fig. 11 - Temperature vs. Drain-to-Source Voltage

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

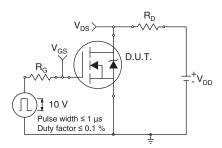


Fig. 13 - Switching Time Test Circuit

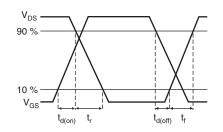


Fig. 14 - Switching Time Waveforms

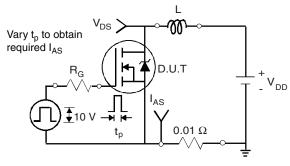


Fig. 15 - Unclamped Inductive Test Circuit

Fig. 16 - Unclamped Inductive Waveforms

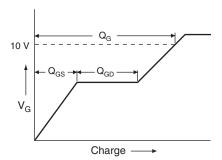
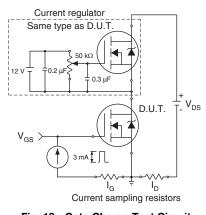
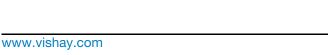
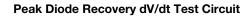
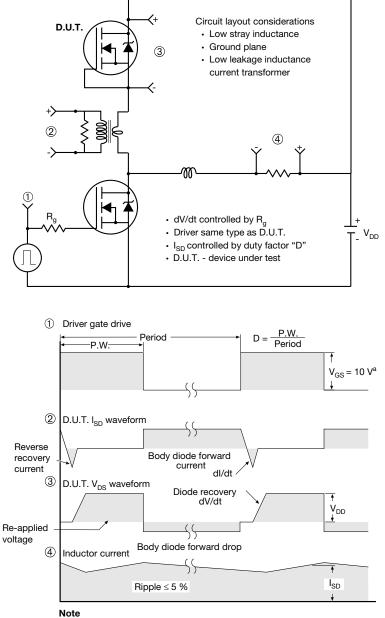


Fig. 17 - Basic Gate Charge Waveform


Fig. 18 - Gate Charge Test Circuit


5 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 91561

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

a. $V_{GS} = 5$ V for logic level devices

Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91561.

SHAY

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.