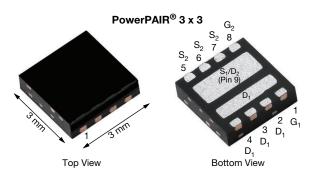
SiZ322DT

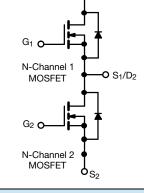

RoHS

COMPLIANT

www.vishay.com

Vishay Siliconix

Dual N-Channel 25 V (D-S) MOSFET


PRODUCT SUMMARY					
MOSFET CHANNEL-1 AND CHANNEL-2					
V _{DS} (V)	25				
$R_{DS(on)}$ max. (Ω) at V_{GS} = 10 V	0.00635				
$R_{DS(on)}$ max. (Ω) at V_{GS} = 4.5 V	0.00900				
Q _g typ. (nC)	6.2				
I _D (A) ^{a, d}	30				
Configuration	Dual				

FEATURES

- TrenchFET[®] Gen IV power MOSFET
- High side and low side MOSFETs form optimized combination for 50 % duty cycle
- Optimized R_{DS} Q_g and R_{DS} Q_{gd} FOM elevates efficiency for high frequency switching
- 100 % R_{α} and UIS tested
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Synchronous buck
- DC/DC conversion
- Half bridge
- POL

ORDERING INFORMATION

Package	PowerPAIR 3 x 3
Lead (Pb)-free and halogen-free	SiZ322DT-T1-GE3

DADAMETER		CHANNEL-1 AND CHANNEL-2			
PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-source voltage	V _{DS}	25	V		
Gate-source voltage		V _{GS}	+16 / -12		
	T _C = 25 °C		30 ^a		
Continuous drain current (T _J = 150 °C)	T _C = 70 °C		30 ^a		
	T _A = 25 °C	I _D	19 ^{b, c}		
	T _A = 70 °C		15.2 ^{b, c}		
Pulsed drain current (t = 100 μs)		I _{DM}	100	— A	
	T _C = 25 °C		13.9		
Continuous source current (MOSFET diode conduction)	T _A = 25 °C	I _S	3.1 ^{b, c}		
Single pulse avalanche current		I _{AS}	15		
L = 0.1 mH		E _{AS}	11.25	mJ	
	T _C = 25 °C		16.7		
Maximum power dissipation	T _C = 70 °C		10.7		
	T _A = 25 °C	P _D	3.7 ^{b, c}	W	
	T _A = 70 °C		2.4 ^{b, c}		
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150		
Soldering recommendations (peak temperature)		Ŭ	260		

Notes a. Package limited

b. Surface mounted on 1" x 1" FR4 board

c. t = 10 s

d. $T_C = 25 \ ^\circ C$

S17-0248-Rev. A, 20-Feb-17

1

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

THERMAL RESISTANCE RATINGS

PABAMETER			CHANNEL-1 AND CHANNEL-2		
FARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT
Maximum junction-to-ambient a, b	t ≤ 10 s	R _{thJA}	27	34	°C/W
Maximum junction-to-case (drain)	Steady state	R _{thJC}	6	7.5	0/11

Notes

a. Surface mounted on 1" x 1" FR4 board

b. Maximum under steady state conditions is 69 °C/W

SPECIFICATIONS ($T_J = 25 \circ C$, unless othe	erwise noted)				
		CHANNEL-1 AND	CHANNEL	-2		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static		·				
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$	25	-	-	V
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	-	2.4	v
Gate-source leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = +16 V / -12 V$	-	-	± 100	nA
Zava gata valtaga drain avreat		$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	1	
Zero gate voltage drain current	IDSS	$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55 ^{\circ}\text{C}$	-	-	5	μΑ
On-state drain current ^a	I _{D(on)}	$V_{DS} \geq 5 \text{ V}, V_{GS} = 10 \text{ V}$	40	-	-	А
Durin counce on state mariatements	P	V _{GS} = 10 V, I _D = 15 A	-	0.00529	0.00635	$\begin{array}{c c} - & \\ 2.4 & \\ \pm 100 & nA \\ 1 & \\ \pm 100 & nA \\ \hline 1 & \\ - & A \\ 0.00635 & \\ 0.00900 & \\ - & S \\ \hline 0.00900 & \\ - & S \\ \hline 0.00900 & \\ - & S \\ \hline 0.00900 & \\ -$
Drain-source on-state resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	-	0.00750	0.00900	<u>(</u> 2
Forward transconductance a	g _{fs}	V _{DS} = 10 V, I _D = 15 A	-	57	-	S
Dynamic ^b		·				
Input capacitance	C _{iss}		-	950	-	
Output capacitance	C _{oss}		-	275	-	pF
Reverse transfer capacitance	C _{rss}	V _{DS} = 12.5 V, V _{GS} = 0 V, f = 1 MHz	-	50	-	
C _{rss} /C _{iss} ratio			-	0.053	0.106	
Total gata abayaa	0	$V_{DS} = 12.5 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$	-	13.4	20.1	
Total gate charge	Qg		-	6.2	9.3	
Gate-source charge	Q _{gs}	V_{DS} = 12.5 V, V_{GS} = 4.5 V, I_{D} = 19 A	-	2.7	-	no
Gate-drain charge	Q _{gd}		-	1.1	-	
Gate resistance	R _g	f = 1 MHz	0.2	0.8	1.6	Ω
Turn-on delay time	t _{d(on)}		-	10	20	
Rise time	t _r	V_{DD} = 12.5 V, R _L = 0.8 Ω, I _D ≅ 15.2 A,	-	25	50	
Turn-off delay time	t _{d(off)}	$V_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$	-	15	30	
Fall time	t _f] [-	15	30	20
Turn-on delay time	t _{d(on)}		-	15	30	115
Rise time	t _r	$V_{DD} = 12.5 \text{ V}, \text{ R}_{L} = 0.8 \Omega, \text{ I}_{D} \cong 15.2 \text{ A},$	-	45	70	
Turn-off delay time	t _{d(off)}	$V_{\text{GEN}} = 4.5 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$	-	20	40	
Fall time	t _f] [-	25	50	

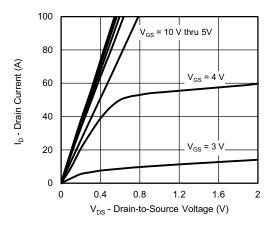
SiZ322DT

Vishay Siliconix

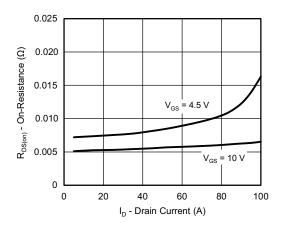
SPECIFICATIONS ($T_J = 25 \text{ °C}$, unless otherwise noted)

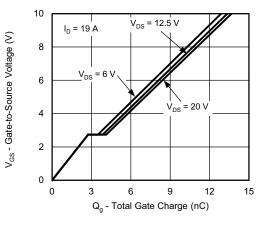
SPECIFICATIONS $(1) = 25$ C, U		,					
PARAMETER	CHANNEL-1 AND CHANNEL-2						
FANAMETEN	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Drain-source Body Diode Characteristi	cs						
Continuous source-drain diode current	I _S	$T_{\rm C} = 25^{\circ}{\rm C}$	-	-	30	А	
Pulse diode forward current	I _{SM}			-	100		
Body diode voltage	V _{SD}	$I_{S} = 15.2 \text{ A}, V_{GS} = 0 \text{ V}$	-	0.85	1.2	V	
Body diode reverse recovery time	t _{rr}		-	32	44	ns	
Body diode reverse recovery charge	Q _{rr}	I _F = 15.2 A, dl/dt = 100 A/μs,	-	22	44	nC	
Reverse recovery fall time	ta	T _J = 25 °C	-	15	-	20	
Reverse recovery rise time	t _b		-	17	-	ns	

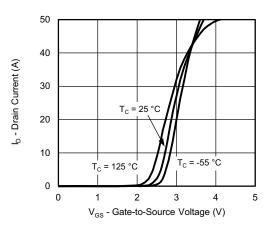
Notes

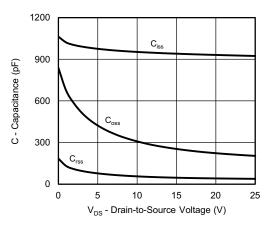

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %

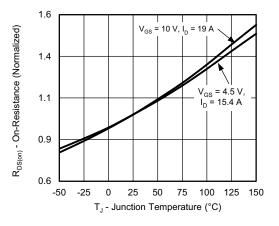
b. Guaranteed by design, not subject to production testing


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Output Characteristics


On-Resistance vs. Drain Current and Gate

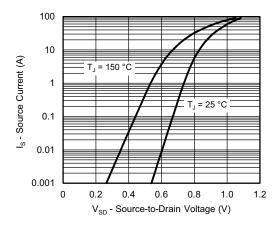

Gate Charge

Transfer Characteristics

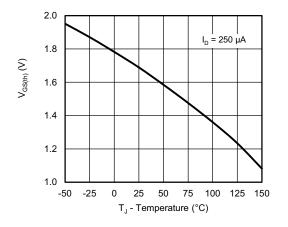
Capacitance

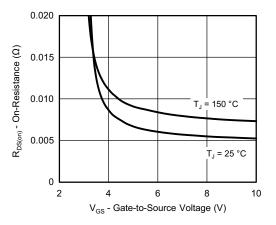
On-Resistance vs. Junction Temperature

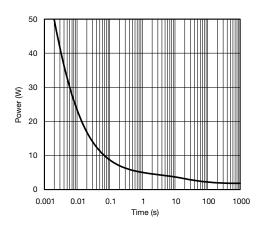
S17-0248-Rev. A, 20-Feb-17

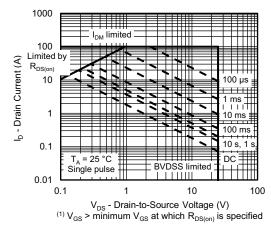

4

Document Number: 79370


For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


Threshold Voltage

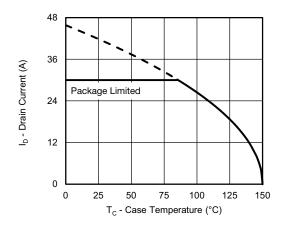
On-Resistance vs. Gate-to-Source Voltage

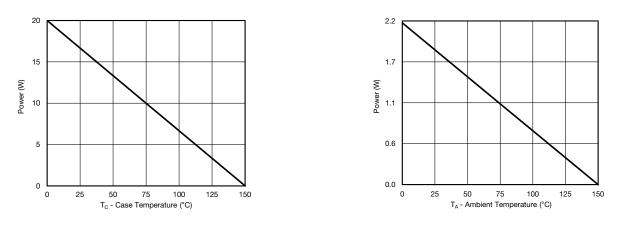
Single Pulse Power

Safe Operating Area, Junction-to-Ambient

S17-0248-Rev. A, 20-Feb-17

5


For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

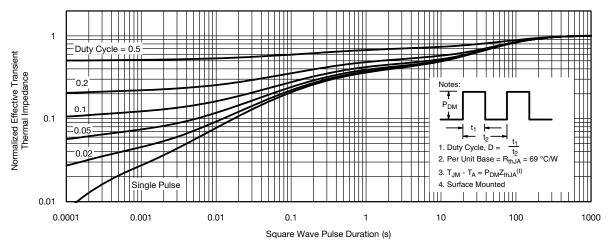

SiZ322DT

Vishay Siliconix

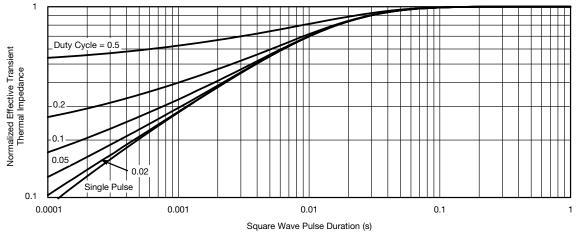
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating a

Power, Junction-to-Case

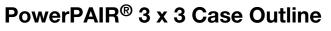

Power, Junction-to-Ambient

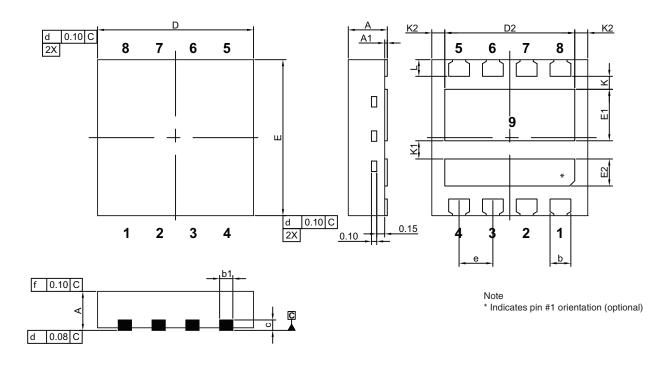
Note


a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

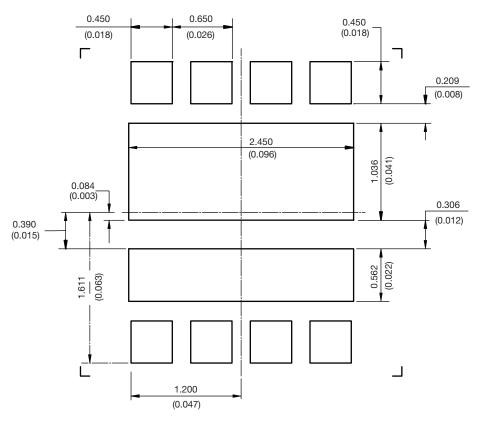
Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?79370.

7


		MILLIMETERS		INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.35	0.40	0.45	0.014	0.016	0.018	
b1	0.20	0.25	0.38	0.008	0.010	0.015	
С	0.18	0.20	0.23	0.007	0.008	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
D2	2.35	2.40	2.45	0.093	0.094	0.096	
E	2.90	3.00	3.10	0.114	0.118	0.122	
E1	0.94	0.99	1.04	0.037	0.039	0.041	
E2	0.47	0.52	0.57	0.019	0.020	0.022	
е		0.65 BSC			0.026 BSC		
К		0.25 typ.			0.010 typ.		
K1		0.35 typ.			0.014 typ.		
K2	0.30 typ.				0.012 typ.		
L	0.27	0.32	0.37	0.011	0.013	0.015	

PAD Pattern

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 3 x 3

Recommended PAD for PowerPAIR 3 x 3 Dimensions in millimeters (inches) Keep-Out 3.5 mm x 3.5 mm for non terminating traces

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.