

20V N-Channel Enhancement Mode Power MOSFET

Description

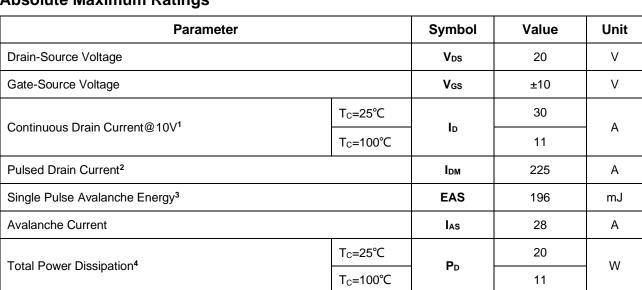
WMQ30N02T1 uses advanced power trench technology that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Features

V_{DS}= 20V, I_D = 30A

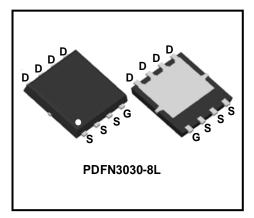
 $R_{DS(on)} < 4.5 m\Omega$ @ $V_{GS} = 4.5 V$

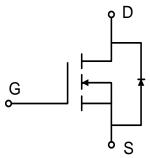
 $R_{DS(on)} < 5.0 \text{m}\Omega$ @ $V_{GS} = 2.5 \text{V}$


 $R_{DS(on)} < 7.5 \text{m}\Omega$ @ $V_{GS} = 1.8 \text{V}$

- Low R_{DS(on)}
- Advanced High Cell Density Trench Technology
- 100% EAS Guaranteed

- High Current Load Applications
- Load Switching
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply


Absolute Maximum Ratings


Thermal Characteristics

Operating Junction and Storage Temperature Range

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Case ¹	Rелс	3.3	°C/W

°C

-55 to 175

TJ, TSTG

Electrical Characteristics T_c = 25°C, unless otherwise noted

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics					l	ı	I
Drain-Source Breakdown Vol	tage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250\mu A$	20	-	-	V
Gate-body Leakage current		I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 10V$	-	-	±100	nA
Zero Gate Voltage Drain Current	T _J =25°C	I _{DSS}	V _{DS} = 20V, V _{GS} = 0V	-	-	1	μΑ
Gate-Threshold Voltage		V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	0.4	0.62	1.0	V
			V _{GS} = 4.5V, I _D = 20A	-	2.9	4.5	
Drain-Source On-Resistance	2	R _{DS(on)}	V _{GS} = 2.5V, I _D = 15A	-	3.4	5.0	mΩ
			V _{GS} = 1.8V, I _D = 10A		4.8	7.5	
Dynamic Characteristics					•		I.
Input Capacitance		Ciss		-	3800	-	pF
Output Capacitance		Coss	V _{DS} = 10V, V _{GS} =0V, f =1MHz	-	680	-	
Reverse Transfer Capacitano	Reverse Transfer Capacitance			-	320	-	
Switching Characteristic	s			•	•	•	
Total Gate Charge		Qg		-	100	-	
Gate-Source Charge Gate-Drain Charge		Q _{gs}	$V_{GS} = 4.5V, V_{DS} = 10V, I_{D} = 15A$	-	24	-	nC
		Q _{gd}		-	20	-	
Turn-On Delay Time	urn-On Delay Time t _{d(on)}		-	11.5	-		
Rise Time		t _r	V_{GS} =4.5V, V_{DD} = 10V,	-	24.5	-	- 0
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $R_L = 1\Omega$, $I_D = 10A$	-	33.2	-	- nS
Fall Time		tf		-	9.6	-	
Drain-Source Body Diod	e Charact	eristics		1	1	1	
Diode Forward Voltage ²		V _{SD}	I _S = 20A, V _{GS} = 0V	-	-	1.2	V
Continuous Source Current ^{1,5}	inuous Source Current ^{1,5} Is V		V _G =V _D =0V , Force Current	-	-	30	Α
Body Diode Reverse Recove	ry Time	t _{rr}			35	-	nS
Body Diode Reverse Recove	ry Charge	Q _{rr}	$I_F = 15A$, dl/dt = 100A/ μ s	-	39	-	nC

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =15V, V_{GS} =10V, L=0.5mH, I_{AS} =28A, R_{G} =25 Ω
- 4.The power dissipation is limited by 175°C $\,$ junction temperature
- $5. The \ data \ is \ theoretically \ the \ same \ as \ I_D \ and \ I_{DM} \ , \ in \ real \ applications \ , \ should \ be \ limited \ by \ total \ power \ dissipation.$

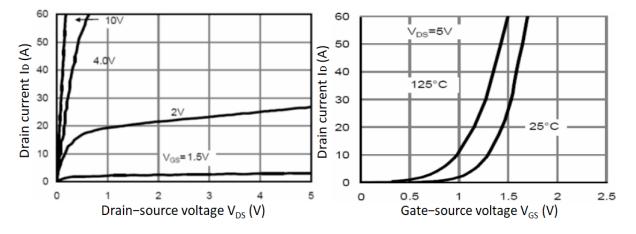


Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

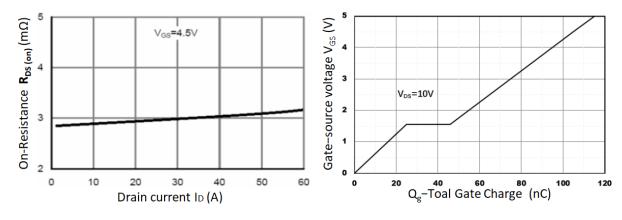


Figure 3. R_{DS(on)} vs. I_D

Figure 4. Gate Charge Characteristics

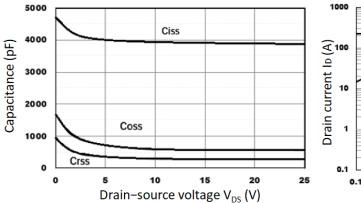


Figure 5. Capacitance Characteristics

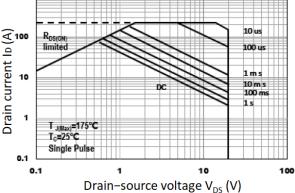
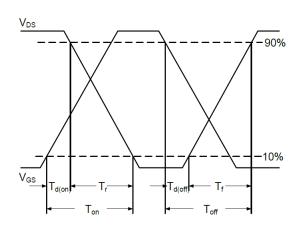
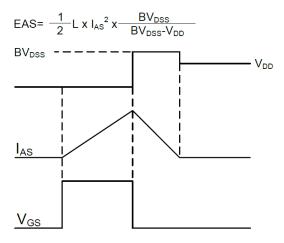
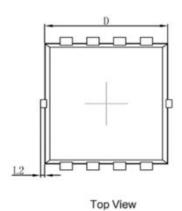
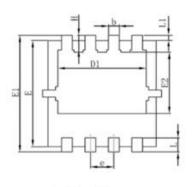
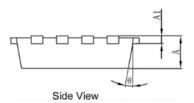



Figure 6. Safe Operating Area

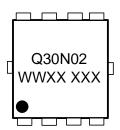

Figure 7. Switching Time Waveform


Figure 8. Unclamped Inductive Switching
Waveform

Mechanical Dimensions for PDFN3030-8L

Bottom View

COMMON DIMENSIONS


	MM		
SYMBOL	MIN	MAX	
А	0.70	0.85	
A1	0.10	0.25	
D	2.90	3.25	
D1	2.25	2.65	
E	2.90	3.20	
E1	3.10	3.45	
E2	1.54	1.98	
b	0.20	0.40	
е	0.60	0.70	
L	0.30	0.50	
L1	0.13BSC		
L2	0.00	0.15	
Н	0.20	0.65	
θ	0°	14°	

Ordering Information

Part	Package	Marking	Packing method
WMQ30N02T1	PDFN3030-8L	Q30N02	Tape and Reel

Marking Information

Q30N02 = Device code WWXX XXX= Date code

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-50310888 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

■ ® is registered trademarks of Wayon Corporation.

Disclaimer

WAYON reserves the right to make changes without further notice to any Products herein to improve reliability, function, or design. The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. WAYON does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.