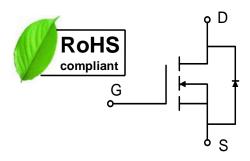
WAYON

30V N-Channel Enhancement Mode Power MOSFET

Description

WMS13N03T1 uses advanced power trench technology that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Features


- V_{DS} = 30V, I_D = 13A $R_{DS(on)} < 6m\Omega @ V_{GS}$ = 10V $R_{DS(on)} < 9m\Omega @ V_{GS}$ = 4.5V
- Low R_{DS(on)}
- Low Gate Charge
- 100% EAS Guaranteed

Applications

- Power Management Switches
- DC/DC Converter

Absolute Maximum Ratings

S S G
SOP-8L

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V _{GS}	±20	V
Continuous Drain Current@10V ¹	T _A =25°C	- Io -	13	A
	T _A =70°C		10	
Pulsed Drain Current ²		I _{DM}	65	А
Single Pulse Avalanche Energy ³		EAS	101.2	mJ
Avalanche Current		las	45	А
Total Power Dissipation ⁴	T _A =25°C	PD	1.5	W
Operating Junction and Storage Temperature Range		Тл, Тята	-55 to+150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ¹	Reja	85	°C/W
Thermal Resistance from Junction-to-Case ¹	R _{0JC}	85	°C/W

Electrical Characteristics T_c = 25°C, unless otherwise noted

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics			I				
Drain-Source Breakdown Voltage		V(BR)DSS	$V_{GS} = 0V, I_D = 250 \mu A$	30	-	-	V
Gate-body Leakage current		lgss	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
Zero Gate Voltage Drain Current	TJ=25℃	- I _{DSS}	$V_{DS} = 24V, V_{GS} = 0V$	-	-	1	μA
	TJ=55℃			-	-	5	
Gate-Threshold Voltage		V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250µA	1.2	1.75	2.5	V
			V _{GS} = 10V, I _D = 12A	-	4.9	6	
Drain-Source On-Resistanc	e	R _{DS(on)}	$V_{GS} = 4.5V, I_D = 10A$	-	6.1	9	mΩ
Forward Transconductance		g fs	V _{DS} = 5V I _D = 12A	-	47	-	S
Dynamic Characteristic	s						
Input Capacitance		Ciss		-	1995	-	pF
Output Capacitance		Coss	V _{DS} = 15V, V _{GS} =0V, f =1MHz	-	267	-	
Reverse Transfer Capacitance		Crss		-	190	-	
Switching Characteristi	cs			•			
Gate Resistance		Rg	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	-	1.9	-	Ω
Total Gate Charge Qg		Qg	V _{GS} = 4.5V, V _{DS} = 15V, I _D = 10A	-	21	-	nC
Gate-Source Charge		Qgs		-	7	-	
Gate-Drain Charge		\mathbf{Q}_{gd}		-	6.9	-	
Turn-On Delay Time		td(on)	$V_{GS} = 10V, V_{DD} = 15V, R_G = 3.3\Omega,$ $I_D = 10A$	-	9.6	-	
Rise Time Turn-Off Delay Time		tr		-	8.6	-	nS
		t _{d(off)}		-	59	-	
Fall Time		t _f	tr		15.6	-	
Drain-Source Body Diode Characteristics							
Diode Forward Voltage ²		Vsd	$I_S = 1A$, $V_{GS} = 0V$	-	-	1.2	V
Continuous Source Current	1,5	ls	Vg=VD=0V, Force Current	-	-	13	А
Body Diode Reverse Recov	ery Time	trr		-	12	-	nS
Body Diode Reverse Recov	ery Charge	Qrr	I _F = 10A, dI/dt = 100A/µs	-	4.8	-	nC

Notes:

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle $\leq 2\%$

3. The EAS data shows Max. rating . The test condition is V_DD=25V, V_GS=10V, L=0.1mH, I_{AS}=45A

4.The power dissipation is limited by 150 $^{\circ}\mathrm{C}\,$ junction temperature

5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

WMS13N03T1

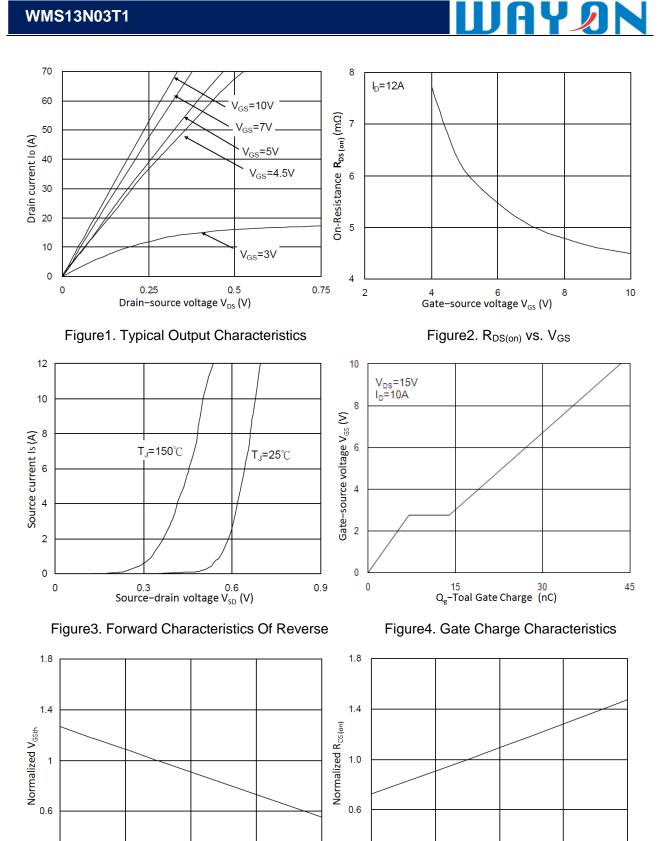


Figure 5. Normalized V_{GS(th)} vs. T_J

Figure6. Normalized R_{DS(ON)} vs. T_J

50

Junction temperature T_J (°C)

0

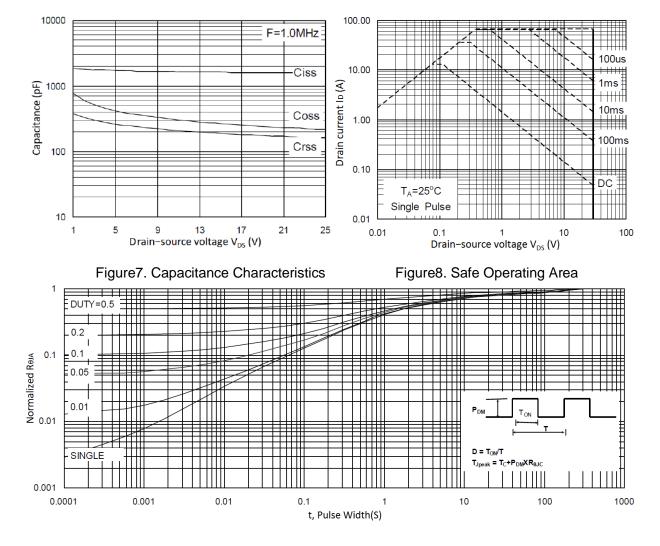
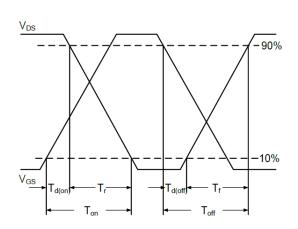
100

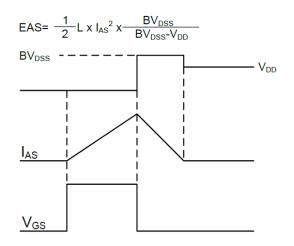
0.2

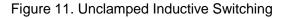
-50

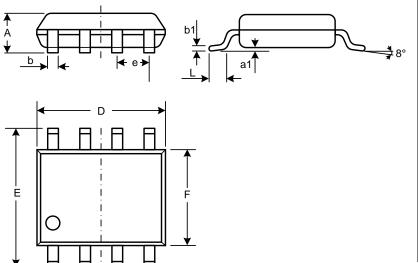
150

WMS13N03T1




Figure9. Normalized Maximum Transient Thermal Impedance



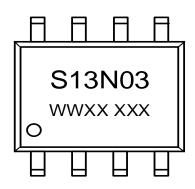
AY

Waveform

Mechanical Dimensions for SOP-8L

WAY ON

COMMON DIMENSIONS


	Ν	ИМ
SYMBOL	MIN	MAX
A	1.23	1.75
a1	0.05	0.25
b	0.31	0.51
b1	0.16	0.25
D	4.70	5.15
E	5.75	6.25
е	1.07	1.47
F	3.70	4.10
L	0.4	1.27

Ordering Information

Part	Package	Marking	Packing method
WMS13N03T1	SOP-8L	S13N03	Tape and Reel

Marking Information

S13N03 = Device code

WWXX XXX= Date code

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-50310888 Fax: 86-21-50757680 Email: market@way-on.com WAYON website: http://www.way-on.com For additional information, please contact your local Sales Representative.

WRYAN ® is registered trademarks of Wayon Corporation.

Disclaimer

CYG WAYON reserves the right to make changes without further notice to any Products herein to improve reliability, function, or design. The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. CYG WAYON does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.